Свежий Бесплатный курс от freeCodeCamp по программированию CUDA.
Этот 12-ти часовой видео курс, с которым вы научитесь программировать с помощью Nvidia CUDA и использовать графические процессоры для высокопроизводительных вычислений и Deep learning.
Содержание:
▪Video: https://www.youtube.com/watch?v=86FAWCzIe_4
▪Code: https://github.com/Infatoshi/cuda-course
▪Github https://github.com/Infatoshi/mnist-cuda
▪Nvidia CUDA in 100 Seconds: https://youtu.be/pPStdjuYzSI?si=WIUc--IpgN-Qi2AP
#cuda #deeplearning #cpp #c #bigdata #courses #бесплатныйкурс
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥23❤5🫡4👏2
Forwarded from Machine learning Interview
Гайд 120-дневной программы обучения CUDA для всех, кто хочет углубиться в программирование на GPU.
Это структурированный, ежедневный план, охватывающий потоки, управление памятью, параллелизм и отладку и многое другое.
Урок на каждый день включает в себя:
- Разбор основной темы занятии
- Практическое упражнение / мини-проект
Разбор ошибок при отладке кода
- Рекомендованные ресурсы
▪Github
▪CUDA C Programming Guide
▪CUDA Toolkit Reference
▪CUDA Best Practices Guide
▪ Бесплатный 12-ти часовой курс по CUDA от freeCodeCamp
@machinelearning_interview - материалы для мл собеса
#cuda #nvidia #freecourse #opensource #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68🔥19❤8
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
cuPyNumeric — аналог NumPy, который переносит вычисления с CPU на GPU буквально заменой импорта.Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥174👍77❤30🤓1
Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.
Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.
Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.
Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:
Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.
После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.
Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.
Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.
Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.
Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.
И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.
Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.
Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.
Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.
Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.
Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🔥33❤27👏1👨💻1🎃1🤝1🗿1
Это новый подход, где LLM помогает оптимизировать CUDA-ядра для PyTorch.
• Слияние операций ускоряет forward/backward-проходы, результаты выше стандартных Torch-базлайнов
• Полный пайплайн: PyTorch → генерация CUDA-кода → эволюционная оптимизация во время работы
• Проверка через LLM: модели автоматически отмечают неправильные ядра (дает +30% к производительности)
• robust-kbench — собственный бенчмарк, где измеряют не только скорость, но и корректность работы LLM
Авторы пишут о 2.5x ускорении над PyTorch eager и даже 6x в линейных операциях
Но большинство примеров — это тесты на слияние операций с неотюненной базой, так что цифры спорные.
К тому же PyTorch 2.5 уже внедряет похожие оптимизации ), поэтому такие рекорды могут быстро обесцениться.
Это интересный подход к самообучающимся AI-компиляторам, но заявленные ускорения стоит проверять на праактике.
@ai_machinelearning_big_data
#AI #CUDA #PyTorch #SakanaAI #LLM #Optimizatio
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍139🤔104❤25🔥16🤩12🎉10👏5😢4💘1😎1
Исследовательская группа DeepReinforce разработала систему полностью автоматического написания GPU-кода для матричного умножения под названием CUDA-L2.
Этот код работает на 10–30% быстрее, чем cuBLAS и cuBLASLt, а это, на минуточку, уже оптимизированные библиотеки от самой NVIDIA.
Обычно такие библиотеки создаются вручную людьми, которые используют готовые шаблоны ядер. А автотюнеры лишь подкручивают параметры, например, размер тайлов.
Но DeepReinforce считают, что даже критически важные и глубоко оптимизированные задачи, как HGEMM, могут быть улучшены с помощью LLM, работающей в связке с RL.
В системе CUDA-L2 языковая модель буквально пишет исходный код CUDA с нуля для каждого размера матрицы. Она не просто меняет параметры, она может менять структуру кода, циклы, стратегию тайлинга, паддинг и даже свизл-паттерны. А еще, она сама выбирает стиль программирования - будь то сырой CUDA, CuTe, CUTLASS или inline PTX.
Процесс выглядит так: цикл RL запускает сгенерированные ядра на реальном железе, измеряет скорость и корректность, а затем обновляет LLM. Со временем модель выводит свои собственные правила производительности, вместо того чтобы полагаться на знания, заложенные людьми.
В качестве генератора использовалась модель DeepSeek 671B. Ее дополнительно доучили на смеси массива CUDA-ядер и качественном коде из библиотек PyTorch, ATen, CUTLASS и примеров от NVIDIA.
Для претрейна и файнтюна LLM большая часть времени GPU тратится именно на операции матричного умножения HGEMM. Если ускорить эти ядра на те самые 10–30%, которые обещает CUDA-L2, то весь процесс обучения становится заметно дешевле и быстрее.
Поскольку CUDA-L2 обрабатывает около 1000 реальных размеров матриц, а не пару вручную настроенных, ускорение работает для самых разных архитектур. Это значит, что в тот же бюджет на GPU можно вместить больше токенов обучения, больше прогонов SFT или RLHF и т.д.
HGEMM-ядра, созданные CUDA-L2, стабильно быстрее стандартных библиотек.
В так называемом "оффлайн-сценарии" CUDA-L2 работает примерно на 17–22% быстрее, чем
torch.matmul, cuBLAS и cuBLASLt. Она даже на 11% обгоняет cuBLASLt AutoTuning, который сам по себе уже использует поиск ядра.А в "серверном", сценарии, который имитирует реальный инференс с паузами между вызовами - разница еще больше: буст в 24–29% по сравнению с
torch.matmul и cuBLAS.Простым рисёрчем проект не ограничен, в репозитории на Github авторы выложили оптимизированные ядра HGEMM A100 для 1000 конфигураций.
В планах: расширение на архитектуры Ada Lovelace, Hopper, Blackwell, поддержка более плотных конфигураций и 32-битный HGEMM.
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍109❤36🔥27🤷6⚡1🆒1🦄1