375K subscribers
4.51K photos
886 videos
17 files
4.95K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 Vico — реализация методики, которая позволяет добиться большей точности в генерации композиционных видео.

Vico — это не требующий обучения фреймворк, который анализирует, как отдельные лексемы из входных токенов промпта влияют на генерируемое видео, и корректирует модель для предотвращения доминирования, учитывая все слова из промпта в равной степени.

Для этого Vico строит пространственно-временной граф внимания, при помощи которого оценивает и регулирует представление всех входных концепций в видео.
Vico может быть применен к множеству моделей для обогащения композиционной насыщенности и точности видео.

🖥 Локальный запуск инференса без UI (с Videocrafterv2)

git clone https://github.com/Adamdad/vico.git
pip install diffusers==0.26.3
git lfs install
git clone https://huggingface.co/adamdad/videocrafterv2_diffusers
export PYTHONPATH="$PWD"
python videocrafterv2_vico.py \
--prompts XXX \
--unet_path $PATH_TO_VIDEOCRAFTERV2 \
--attribution_mode "latent_attention_flow_st_soft"


🖥 GitHub [ Stars: 19 | Issues: 0 | Forks: 0 ]
🟡 Страница проекта
🟡 Arxiv

@ai_machinelearning_big_data

#T2V #Framework #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
👍166🔥3
🌟 CogVideoX Factory: оптимизация файнтюна моделей генерации видео семейства CogVideoX.

CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.

Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".

Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:

🟢CPUOffloadOptimizer - перемещает обучаемые параметры и градиенты модели в CPU, освобождая память GPU для других операций;

🟢DeepSpeed Zero2 - распределяет параметры модели по нескольким GPU, что позволяет обучать большие модели, которые иначе не поместились бы в память одного GPU;

🟢LoRA - метод тонкой настройки, который изменяет только небольшое подмножество параметров модели, сохраняя при этом основную часть весов неизменной.

CogVideoX Factory предлагает сценарии обучения:

🟠LoRA для "text-to-video": cкрипт train_text_to_video_lora.sh;

🟠LoRA для "IMG-to-video": cкрипт train_image_to_video_lora.sh;

🟠SFT всей модели для "text-to-video": скрипт train_text_to_video_sft.sh.

⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт prepare_dataset.py играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.

CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.


📌Лицензирование : Apache 2.0 License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍95
🌟 TurboDiffusion: ускорение генерации видео в 100+ раз.

Суровая реальность нашего времени: вы хотите сгенерировать 5-секундное видео на большой SOTA-модели. Вы запускаете промпт, идете пить кофе, возвращаетесь, а процесс все еще идет. И зачастую генерация может занимать больше часа.

Главные виновники - чудовищная вычислительная сложность механизма внимания в трансформерах, необходимость сотен шагов денойзинга и огромный объем памяти для весов в полной точности.


Авторы проекта TurboDiffusion из Цинхуа и Беркли решили собрать все эффективные методы сжатия и ускорения в один пайплайн. Их идея заключалась в том, что разреженность и квантование — это техники, которые не мешают друг другу.

🟡Архитектура держится на 3-х китах оптимизации:

🟢Заменили стандартное внимание на гибрид из SageAttention2++ и Sparse-Linear Attention (SLA), который превратил квадратичную сложность в линейную. чтобы модель фокусировалась только на важных токенах.

🟢Дистиллировали сэмплинг через rCM - вместо стандартных 50–100 шагов модель приходит к результату всего за 3-4 шага без потери сути изображения.

🟢Перевели и веса и активации линейных слоев в INT8 используя блочное квантование, чтобы не потерять точность.

В довершении ко всему смогли объединить после файнтюнинга под SLA и дистилляции rCM веса в единую модель, избежав конфликтов.

🟡Результаты бенчмарков выглядят как опечатка, но это не она.

На RTX 5090 время генерации для тяжелой модели Wan2.2-I2V 14B упало с 69 минут до 35.4 секунд. А для более легкой Wan 2.1-1.3B - с почти 3-х минут до 1.8 секунды.

Это ускорение больше чем в 100 раз.

При этом, судя по примерам, визуальное качество осталось практически неотличимым от оригинала.


📌Лицензирование: Apache 2.0 License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #I2V #T2V #TurboDiffusion
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍62🔥3919🤗3💘2😁1🦄1