379K subscribers
4.37K photos
833 videos
17 files
4.85K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6323🔥83
🖥 OpenAI открывает бесплатное обучение по работе с нейросетями

OpenAI запустила "Академию OpenAI", которая претендует на роль главного учебника по работе с ИИ.

Платформа поможет освоить нейросети на практике, понять их возможности и научиться эффективно использовать ChatGPT и Sora в повседневной жизни и работе.

Обширная база обучающих материалов доступна на отдельном сайте.
Live-трансляции и офлайн-мероприятия помогут глубже разобраться в технологиях.
Бесплатный доступ — OpenAI стремится расширить аудиторию, а не ограничивать её ценником.

Программа рассчитана на широкий круг слушателей — от технических специалистов до политиков, представителей бизнеса и академического сообщества.

@ai_machinelearning_big_data


📌Начать обучение
📌 Блог

#ai #freecourses #openai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6416🔥13😁7🗿6🤣5
✔️ Подборка полезных бесплатных курсов и гайдов на выходные.

🖥 Microsoft представила свежий цикл лекций по Python и и ИИ.

Содержание: Курс включает 9 лекций, дополненных видео, подробными презентациями и примерами кода. Цикла - обучение разработке ИИ-агентов доступен написан понятно, даже для новичков в программирование.
Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
👉 Курс

💡Гарвардский курс по машинному обучению

Культовый трек CS 249 превратили в интерактивный учебник - и это, пожалуй, один из лучших стартов для инженеров, которые хотят делать реальные ML-системы, а не просто играться с моделями.

• Вся база по ML: объясняют фундамент с нуля, нужно только знание Python
• Проектирование систем и инженерия данных
• Подготовка датасетов, MLOps и мониторинг
• Развёртывание ИИ в IoT и продакшене

Это практический курс: не о формулах, а о том, как внедрять ML так, чтобы он приносил бизнесу прибыль.
Если хочешь понять, как модели живут в проде - идеальный вариант для старта.
👉Курс

🖥 Создай своего Bash-агента с NVIDIA Nemotron за 1 час

NVIDIA показала, как собрать AI-агента, который понимает твои запросы на естественном языке и сам выполняет команды Bash.
В основе модель Nemotron Nano 9B v2: компактная, быстрая, идеально подходит для локального эксперимента.

Агент умеет:
- распознавать команды на естественном языке («создай папку», «покажи файлы»),
- превращать эти команды в рабочие Bash-срипты
- спрашивать подтверждение перед выполнением.

Весь код занимает ~200 строк Python, работает через FastAPI и LangGraph.
Можно расширить под DevOps, Git-операции, анализ логов или управление сервером.
👉Гайд

⚡️ Kaggle Learn: интерактивные мини-курсы по Python, Data Science и машинному обучению.
Полностью бесплатно и максимально практично.


Что внутри:
• Python, Pandas, визуализация
• Основы машинного обучения и фичеринжиниринг
• Подготовка данных и работа с моделями

Практика без лишней теории учишься и сразу применяешь.
👉Курс

🖥 Гайд по шардингу баз данных от PlanetScale

Вы узнаете, как масштабировать базы данных через шардинг - разбиение данных по серверам для роста производительности и отказоустойчивости.

Главное:
• Шардинг нужен, когда одна база больше не справляется с нагрузкой.
• Есть два популярных подхода — по диапазону (range) и по хешу (hash).
• Важно выбрать стабильный ключ (например, user_id) и избегать кросс-шардовых запросов.
• Прокси-слой немного увеличивает задержку, но даёт масштабируемость.

Отличный материал, если хочешь понять, как строят системы уровня YouTube. А здесь много базы по SQL
Читать

🧠 60 готовых проектов по генеративному ИИ

Список из 60 проектов на GitHub с открытым кодом по генеративному ИИ 0от текстовых моделей до аудио и видео.

Каждый проект - с описанием и ссылкой на репозиторий. Можно выбрать идею, запустить локально и собрать своё AI-портфолио.
👉 Github

👉 Еще больше полезного.

@ai_machinelearning_big_data

#AI #MachineLearning #DataScience #ML #ИИ #freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍10146🔥18🗿5💋1