Qwen3-Coder-Next — открытая MoE-модель на 80 млрд. общих и 3 млрд. активных параметров с контекстным окном в 256К токенов для агентных задач.
Модель учили через agentic training на 800 тыс. задачах, созданных из GitHub PR в реальных Docker-контейнерах, где она получала прямой фидбек от среды.
Это развило навыки планирования в ризонинге, использования инструментов и умение восстанавливаться после ошибок выполнения.
На претрейне расширили поддержку языков с 92 до 370, затем SFT на траекториях агентов, а потом - специализация экспертов (WebDev, QA, UX) с последующей дистилляцией в единую модель.
В конце, через RL подтянули в задачах кодинга и математики, используя юнит-тесты как сигнал вознаграждения.
Основной массив данных (те самые Docker-контейнеры) это по большей мере Python (202 тыс. инстансов) и JS/TS (175 тыс. инстансов). Для редких языков модель может чаще галлюцинировать, так как данных для RL и проверок через юнит-тесты там физически меньше.
Модель все-таки ощутимо отстает от Claude 4.5 Opus на сверхсложных архитектурных задачах с большими кодовыми базами.
Иногда ей требуется слишком много итераций, чтобы нащупать верное решение и это вопросы к эффективности планирования.
Фронтенд и UI - слабое место (авторы признают), а в киберсек-задачах (поиск уязвимостей и TAA) модель пока не дотягивает до человеческого уровня.
Единственное, что спасает Qwen3-Coder-Next от забвения - это компактность и поддержка fill-in-the-middle для адекватного автодополнения кода в IDE.
Qwen обещают улучшать ризонинг, принятие решении и поддержку дополнительных задач на основе фидбэка пользователей.
@ai_machinelearning_big_data
#AI #ML #LLM #QwenCoderNext #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61❤38👍26👾2🍓1🦄1