Не прошло и суток с момента релиза, а Zhipu AI выложила веса GLM-5 и любезно поделилась проведенными бенчмарками.
Архитектура пятого поколения построена на MoE: 744 млрд. общих параметров при активных 40 млрд. Модель учили на 28,5 трлн. токенов и она получила контекстное окно в 200 тыс. токенов.
GLM-5 ориентирован на 5 доменов: кодинг, рассуждение, агентные сценарии, генеративное творчество и работа с длинным контекстом.
Для эффективной обработки длинных последовательностей интегрирован механизм Dynamically Sparse Attention от DeepSeek, он позволяет избежать квадратичного роста копьюта без потери качества.
По бенчмаркам GLM-5 занимает 1 место среди open-source моделей: 77,8% на SWE-bench Verified, лидирует на Vending Bench 2, BrowseComp и MCP-Atlas, а в задачах агентного кодирования и рассуждений вплотную подбирается к Claude Opus 4.5 и GPT-5.2.
Вместе с моделью, авторы предлагают Z Code — собственную агентную IDE с поддержкой параллельной работы нескольких агентов над одной задачей.
Локальный деплой поддерживается vLLM и SGLang, а также non-NVIDIA чипами: Huawei Ascend, Moore Threads, Cambricon (через квантование и оптимизацию ядер).
Если вам негде поднять модель локально, она доступна через платформу chat.z.ai, API и на OpenRouter.
Квантованные версии пока сделали только Unsloth, традиционно - полный набор от 1-bit до BF16.
@ai_machinelearning_big_data
#AI #ML #LLM #GLM5 #ZAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍25❤14😍9🦄5👌2