DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо
Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь:
DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram):
Чтобы правильно поделить бюджет параметров между MoE и Engram посчитали сценарии масштабирования. График лосса от соотношения этих частей выглядит как буква U:
DeepSeek обучили модель Engram-27B и сравнили ее с классической MoE-27B при одинаковом бюджете параметров и FLOPs. Итоги:
Общее качество подросло: MMLU +3.4 пункта, HumanEval (код) +3.0.
На длинном контексте - разнос. В тесте на поиск иголки (NIAH) точность выросла с 84.2 до 97.0. Модель разгрузила слои внимания от запоминания локальных паттернов, и оно сфокусировалось на глобальном контексте.
Модель быстрее сходится. Engram берет на себя рутину в ранних слоях, тем самым позволяя модели сразу учиться сложным вещам.
Таблица эмбеддингов для Engram может быть запредельно огромной (в пейпере разгоняли до 100B параметров) и, очевидно, в VRAM это не влезает.
Решили так: раз ID токенов известен до прогона слоя, то эти данные можно хранить в RAM и асинхронно подтягивать. В реале, оверхед от этой механики показал меньше 3%., т.е. мы получаем модель, которая знает больше, чем влезает в GPU, используя оперативку сервера.
Вместо того чтобы заставлять модель учить все наизусть, ей дают гигантский справочник. Теоретически, это открывает путь к
Похоже, в V4 мы увидим как эта схема работает, ведь инсайдеры обещают у нее запредельные скилы.
@ai_machinelearning_big_data
#AI #ML #LLM #Engram #Deepseek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤146👍64🔥49🥰4🤔2🦄1