Database Labdon
871 subscribers
35 photos
3 videos
1 file
882 links
🕸 Database Academy

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Training a Tokenizer for BERT Models (4 minute read)

🟢 خلاصه مقاله:
این مقاله توضیح می‌دهد چگونه با استفاده از کتابخانه‌های tokenizers و datasets از Hugging Face یک WordPiece tokenizer اختصاصی برای BERT آموزش دهیم: داده‌ها با یک iterator بارگذاری می‌شوند، یک واژگان 30,522 کلمه‌ای همراه با BERT special tokens مانند [PAD]، [UNK]، [CLS]، [SEP] و [MASK] ساخته می‌شود، و تنظیمات اختیاری مانند lowercase و pre-tokenization اعمال می‌گردد. سپس برای استفاده عملی، padding و truncation فعال می‌شود و tokenizer ذخیره و روی نمونه‌ها تست می‌شود. در مرحله‌ی آموزش یا fine-tuning مدل BERT، باید همخوانی tokenizer و مدل حفظ شود؛ اگر از یک BERT ازپیش‌آموزش‌داده‌شده با tokenizer جدید استفاده می‌کنید، ممکن است نیاز به تغییر اندازه‌ی embeddingها مطابق با واژگان جدید داشته باشید. این روند زمینه را برای پیش‌پردازش داده و fine-tuning مؤثر فراهم می‌کند.

#BERT #Tokenizer #WordPiece #HuggingFace #NLP #Tokenization #MachineLearning

🟣لینک مقاله:
https://machinelearningmastery.com/training-a-tokenizer-for-bert-models/?utm_source=tldrdata


👑 @Database_Academy
🔵 عنوان مقاله
From Text to Token: How Tokenization Pipelines Work

🟢 خلاصه مقاله:
** این مطلب در دو بخش به نکات کاربردی می‌پردازد. در بخش اول، «From Text to Token: How Tokenization Pipelines Work» به قلم James Blackwood-Sewell توضیح می‌دهد که چگونه متن خام طی مراحلی مانند نرمال‌سازی، پیش‌توکنیزه‌کردن و به‌کارگیری الگوریتم‌های زیرواژه‌ای مثل BPE، WordPiece و Unigram به توکن تبدیل می‌شود. نکاتی مانند ساخت واژگان، استفاده از توکن‌های ویژه (PAD، BOS/EOS، CLS/SEP)، مدیریت نویسه‌های ناشناخته، حفظ آفست‌ها، و چالش‌های چندزبانه و ایموجی‌ها مطرح می‌شود. همچنین بر ملاحظات مهندسی مانند تکه‌تکه‌کردن متن‌های بلند، اسلایدینگ ویندو، تفاوت نیازهای آموزش و استنتاج، و بهینه‌سازی عملکرد با ابزارهایی مانند Hugging Face Tokenizers و SentencePiece تأکید می‌شود؛ چرا که تعداد توکن‌ها مستقیماً بر هزینه و تأخیر سامانه‌های LLM اثر می‌گذارد.

در بخش دوم، «Understanding and Setting Postgres JDBC Fetch Size» نوشته Shane Borden توضیح می‌دهد که رفتار پیش‌فرض Postgres JDBC ممکن است برای نتایج بزرگ حافظه را پر کند و چگونه با فعال‌کردن سرور-ساید کرسرها و تنظیم setFetchSize (یا defaultRowFetchSize) می‌توان نتایج را به‌صورت batched و استریم‌شده دریافت کرد. به ارتباط این تنظیم با autocommit، بازه‌های پیشنهادی برای اندازه batch، موازنه بین تعداد رفت‌وبرگشت شبکه و مصرف حافظه، و نکات عملی مانند بستن به‌موقع ResultSet/Statement و هماهنگی با تنظیمات ORM (مثلاً hibernate.jdbc.fetch_size) پرداخته می‌شود. جمع‌بندی این است که کنار بهینه‌سازی fetch size، طراحی کوئری و ایندکس مناسب و پروفایل‌کردن حافظه و زمان، برای پایایی و کارایی ضروری است.

#Tokenization #NLP #Postgres #JDBC #PerformanceTuning #DataEngineering #LLM #Database

🟣لینک مقاله:
https://postgresweekly.com/link/175726/web


👑 @Database_Academy