🔵 عنوان مقاله
BigQuery Under the Hood: Scalability, Reliability, and Usability Enhancements for Gen AI Inference (7 minute read)
🟢 خلاصه مقاله:
BigQuery با تمرکز بر مقیاسپذیری، قابلیت اتکا و سهولت استفاده، اجرای Gen AI را در خود دادهانبار پیش میبرد. هسته بهبودها، استفاده از dynamic token‑based batching است که بهجای شمارش ردیفها، به طول توکنی ورودیها توجه میکند و تا حد امکان ردیفهای بیشتری را در یک درخواست جا میدهد. نتیجه، جهش چشمگیر کارایی است: بیش از 100 برابر برای first‑party LLMs و حدود 30 برابر برای embeddings.
از نظر قابلیت اتکا، سیستم با partial failure modes و adaptive retries تضمین میکند که خطای یک ردیف کل پرسوجو را مختل نکند؛ ردیفهای سالم ادامه مییابند و خطاها با تکرارهای هوشمند و مدیریت خطا مهار میشوند. حاصل، بیش از 99.99٪ تکمیل پرسوجو بدون شکست ردیفی و بیش از 99.99٪ موفقیت در سطح ردیف است.
این توانمندیها با تجربه کاربری ساده ارائه میشوند: انتخاب خودکار اندازه بچها، تعادل میان تاخیر و توان عملیاتی، و ارایه بازخورد شفاف درباره خطاها و بازیابی. جمعبندی اینکه کاربران میتوانند استنتاج LLM و embeddings را مستقیماً در BigQuery با سرعت بالا و پایداری قوی اجرا کنند، بدون نیاز به تغییرات پیچیده در کد یا عملیات.
#BigQuery #GenAI #LLMInference #Scalability #Reliability #Embeddings #Batching #DataWarehouse
🟣لینک مقاله:
https://cloud.google.com/blog/products/data-analytics/bigquery-enhancements-to-boost-gen-ai-inference/?utm_source=tldrdata
➖➖➖➖➖➖➖➖
👑 @Database_Academy
BigQuery Under the Hood: Scalability, Reliability, and Usability Enhancements for Gen AI Inference (7 minute read)
🟢 خلاصه مقاله:
BigQuery با تمرکز بر مقیاسپذیری، قابلیت اتکا و سهولت استفاده، اجرای Gen AI را در خود دادهانبار پیش میبرد. هسته بهبودها، استفاده از dynamic token‑based batching است که بهجای شمارش ردیفها، به طول توکنی ورودیها توجه میکند و تا حد امکان ردیفهای بیشتری را در یک درخواست جا میدهد. نتیجه، جهش چشمگیر کارایی است: بیش از 100 برابر برای first‑party LLMs و حدود 30 برابر برای embeddings.
از نظر قابلیت اتکا، سیستم با partial failure modes و adaptive retries تضمین میکند که خطای یک ردیف کل پرسوجو را مختل نکند؛ ردیفهای سالم ادامه مییابند و خطاها با تکرارهای هوشمند و مدیریت خطا مهار میشوند. حاصل، بیش از 99.99٪ تکمیل پرسوجو بدون شکست ردیفی و بیش از 99.99٪ موفقیت در سطح ردیف است.
این توانمندیها با تجربه کاربری ساده ارائه میشوند: انتخاب خودکار اندازه بچها، تعادل میان تاخیر و توان عملیاتی، و ارایه بازخورد شفاف درباره خطاها و بازیابی. جمعبندی اینکه کاربران میتوانند استنتاج LLM و embeddings را مستقیماً در BigQuery با سرعت بالا و پایداری قوی اجرا کنند، بدون نیاز به تغییرات پیچیده در کد یا عملیات.
#BigQuery #GenAI #LLMInference #Scalability #Reliability #Embeddings #Batching #DataWarehouse
🟣لینک مقاله:
https://cloud.google.com/blog/products/data-analytics/bigquery-enhancements-to-boost-gen-ai-inference/?utm_source=tldrdata
➖➖➖➖➖➖➖➖
👑 @Database_Academy
Google Cloud Blog
BigQuery enhancements to boost gen AI inference | Google Cloud Blog
With recent performance improvements to BigQuery, users can expect gains in scalability, reliability, and usability across BigQuery and BigQuery ML.
🔵 عنوان مقاله
From Dark Data to Bright Insights: The Dawn of Smart Storage (6 minute read)
🟢 خلاصه مقاله:
**خلاصه فارسی: گوگل Cloud دو قابلیت جدید برای Cloud Storage معرفی کرده است: auto annotate و object contexts. این قابلیتها با تکیه بر AI برای دادههای نامنظم بهصورت خودکار متادیتا و سرنخهای معنایی ایجاد میکنند تا دادههای «تاریک» قابل جستوجو، حاکمیتپذیر و قابل تحلیل شوند. auto annotate (نسخه آزمایشی) در سطح هر شیء برچسبها، تشخیصها و پرچمهای PII را در مقیاس تولید میکند و فرآیند طبقهبندی و سازماندهی را تسریع میکند. object contexts نیز برچسبگذاری بومی و انعطافپذیر و تبار متادیتا را فراهم میآورد و بهصورت یکپارچه با Cloud Storage، IAM و BigQuery کار میکند تا هم حاکمیت دسترسی حفظ شود و هم پرسوجو و تحلیل متادیتا ممکن شود. هر دو قابلیت فعلاً در دسترس آزمایشی محدود هستند.
#CloudStorage #GoogleCloud #AI #Metadata #DataGovernance #BigQuery #IAM #PII
🟣لینک مقاله:
https://cloud.google.com/blog/products/storage-data-transfer/make-your-unstructured-data-smart-with-cloud-storage/?utm_source=tldrdata
➖➖➖➖➖➖➖➖
👑 @Database_Academy
From Dark Data to Bright Insights: The Dawn of Smart Storage (6 minute read)
🟢 خلاصه مقاله:
**خلاصه فارسی: گوگل Cloud دو قابلیت جدید برای Cloud Storage معرفی کرده است: auto annotate و object contexts. این قابلیتها با تکیه بر AI برای دادههای نامنظم بهصورت خودکار متادیتا و سرنخهای معنایی ایجاد میکنند تا دادههای «تاریک» قابل جستوجو، حاکمیتپذیر و قابل تحلیل شوند. auto annotate (نسخه آزمایشی) در سطح هر شیء برچسبها، تشخیصها و پرچمهای PII را در مقیاس تولید میکند و فرآیند طبقهبندی و سازماندهی را تسریع میکند. object contexts نیز برچسبگذاری بومی و انعطافپذیر و تبار متادیتا را فراهم میآورد و بهصورت یکپارچه با Cloud Storage، IAM و BigQuery کار میکند تا هم حاکمیت دسترسی حفظ شود و هم پرسوجو و تحلیل متادیتا ممکن شود. هر دو قابلیت فعلاً در دسترس آزمایشی محدود هستند.
#CloudStorage #GoogleCloud #AI #Metadata #DataGovernance #BigQuery #IAM #PII
🟣لینک مقاله:
https://cloud.google.com/blog/products/storage-data-transfer/make-your-unstructured-data-smart-with-cloud-storage/?utm_source=tldrdata
➖➖➖➖➖➖➖➖
👑 @Database_Academy
Google Cloud Blog
Make your unstructured data smart with Cloud Storage | Google Cloud Blog
See how Google's Auto annotate and object contexts let you curate AI datasets, streamline discovery, and manage unstructured data.