https://thespaceway.info/space/25319-gipoteza-kosmicheskogo-mozga-vselennaja-kak-nejronnaja-set.html
The Spaceway
Гипотеза космического мозга: Вселенная как нейронная сеть | The Spaceway
Представьте себе, что огромные космические пустоты - это не просто области, лишенные материи, а аналоги нейронов в мозге Вселенной.
NGC 2070, также известная как туманность Тарантул, — это гигантская эмиссионная туманность в созвездии Золотая Рыба. Находясь на расстоянии около 160 000 световых лет от нас в Большом Магеллановом Облаке, она является самой яркой областью звездообразования в Местной группе галактик.
⠀
Эта космическая "кузница" простирается на 1 000 световых лет и в 10 раз превосходит по размерам знаменитую туманность Ориона. Внутри NGC 2070 бушуют мощные звездные ветры и взрывы сверхновых, формируя новые поколения звезд.
⠀
В центре туманности находится скопление R136, содержащее некоторые из самых массивных и ярких известных звезд во Вселенной. Именно эти гигантские светила ионизируют окружающий газ, заставляя его светиться.
⠀
NGC 2070 — это окно в раннюю историю Вселенной, показывающее нам, как выглядели области звездообразования миллиарды лет назад.
⠀
Эта космическая "кузница" простирается на 1 000 световых лет и в 10 раз превосходит по размерам знаменитую туманность Ориона. Внутри NGC 2070 бушуют мощные звездные ветры и взрывы сверхновых, формируя новые поколения звезд.
⠀
В центре туманности находится скопление R136, содержащее некоторые из самых массивных и ярких известных звезд во Вселенной. Именно эти гигантские светила ионизируют окружающий газ, заставляя его светиться.
⠀
NGC 2070 — это окно в раннюю историю Вселенной, показывающее нам, как выглядели области звездообразования миллиарды лет назад.
Вы слышали о сверхновых, но знаете ли вы о гиперновых? Это еще более мощные взрывы, происходящие при коллапсе сверхмассивных звезд. Они в 100 раз мощнее обычных сверхновых и могут быть источниками гамма-всплесков. Гиперновые настолько редки, что мы пока наблюдали лишь несколько кандидатов. Они играют важную роль в обогащении Вселенной тяжелыми элементами.
Магнитары - это нейтронные звезды с невероятно сильными магнитными полями, в триллионы раз превышающими земное. Их поля настолько мощны, что могут искажать атомы и вызывать "звездотрясения". Вспышки магнитаров могут быть видны с другого конца галактики! Эти загадочные объекты помогают нам изучать поведение материи в экстремальных условиях.
https://thespaceway.info/news/25326-uchenye-obnaruzhili-ogromnye-peshhery-pod-poverhnostju-luny.html
The Spaceway
Ученые обнаружили огромные пещеры под поверхностью Луны | The Spaceway
Но как ученые смогли "заглянуть" под поверхность Луны? Ответ кроется в данных, собранных орбитальным аппаратом NASA LRO.
Долгое время считалось, что квантовые эффекты слишком хрупки для "грязного" мира биологии. Однако последние исследования показывают, что жизнь может использовать квантовую механику в своих целях. Например, перелетные птицы, возможно, используют квантовую запутанность для навигации по магнитному полю Земли. Фотосинтез, процесс преобразования солнечного света в химическую энергию, может использовать квантовую когерентность для достижения почти 100% эффективности. Даже наше обоняние может основываться на квантовом туннелировании. Эти открытия не только меняют наше понимание жизни, но и могут привести к созданию новых квантовых технологий, вдохновленных природой.
Представьте объект толщиной с атомное ядро, но протяженностью через всю Вселенную. Это космическая струна - гипотетический топологический дефект пространства-времени, который мог образоваться в первые мгновения после Большого взрыва.
⠀
Эти струны могут обладать невообразимой массой: "нитка" длиной всего в один километр может весить больше, чем наша планета. Они могли сыграть ключевую роль в формировании крупномасштабной структуры Вселенной, создавая гравитационные колебания, вокруг которых собиралась материя. Если космические струны существуют, их обнаружение может открыть окно в физику сверхвысоких энергий, недоступных даже самым мощным ускорителям частиц.
⠀
Эти струны могут обладать невообразимой массой: "нитка" длиной всего в один километр может весить больше, чем наша планета. Они могли сыграть ключевую роль в формировании крупномасштабной структуры Вселенной, создавая гравитационные колебания, вокруг которых собиралась материя. Если космические струны существуют, их обнаружение может открыть окно в физику сверхвысоких энергий, недоступных даже самым мощным ускорителям частиц.
Вода, казалось бы, простое вещество, скрывает удивительные тайны. В экстремальных условиях она может образовывать экзотические формы льда с уникальными свойствами. Например, лед VII, образующийся при огромном давлении, остается твердым даже при температурах в сотни градусов. А теоретически предсказанный металлический лед может проводить электричество как металл.
⠀
Эти формы льда могут существовать в недрах ледяных планет и экзолун, создавая условия для возникновения жизни, радикально отличающейся от земной. Изучение экзотических форм льда не только расширяет наше понимание фундаментальной физики, но и помогает в поисках внеземной жизни в нашей галактике и за ее пределами.
⠀
Эти формы льда могут существовать в недрах ледяных планет и экзолун, создавая условия для возникновения жизни, радикально отличающейся от земной. Изучение экзотических форм льда не только расширяет наше понимание фундаментальной физики, но и помогает в поисках внеземной жизни в нашей галактике и за ее пределами.
Захватывающий вид на вихревые структуры в северном полушарии Юпитера запечатлел космический аппарат NASA "Юнона" 24 октября 2017 года. В момент съемки зонд находился на расстоянии 18 906 километров от верхней границы облачного покрова планеты-гиганта.
⠀
На снимке отчетливо видны белоснежные облака, состоящие из кристаллов водяного и аммиачного льда, которые формируют причудливые узоры в бурной атмосфере Юпитера. Эти динамичные образования демонстрируют сложность и масштабность атмосферных процессов, происходящих на крупнейшей планете Солнечной системы.
⠀
На снимке отчетливо видны белоснежные облака, состоящие из кристаллов водяного и аммиачного льда, которые формируют причудливые узоры в бурной атмосфере Юпитера. Эти динамичные образования демонстрируют сложность и масштабность атмосферных процессов, происходящих на крупнейшей планете Солнечной системы.