📊 Новое поколение баз данных для ИИ-агентов
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
@sqlhub
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
@sqlhub
👍11❤9🔥4👎1
🪄 Открытая альтернатива Firebase — на стероидах PostgreSQL
Платформа, которая даёт всё, чтобы собрать современное веб-, мобильное или AI-приложение — без проприетарных SDK и боли.
Что внутри:
⚙️ Хостинг Postgres с realtime-синхронизацией
🧩 Автогенерация REST и GraphQL API
🔐 Аутентификация и авторизация через JWT
⚡ Edge-функции и серверные триггеры
📦 Хранилище файлов с поддержкой S3
🧠 AI-инструменты: векторные индексы, эмбеддинги, семантический поиск
🪶 Всё open source и доступно для self-host.
По сути это Firebase-опыт, но построенный на «взрослых» open-source технологиях:
PostgreSQL, Elixir, GoTrue, PostgREST, pg_graphql.
Платформа, где можно запустить идею, вырастить продукт и не упереться в чьи-то закрытые лимиты.
#Postgres #OpenSource #Backend #AI #GraphQL #Realtime #FirebaseAlternative
https://github.com/supabase/supabase
Платформа, которая даёт всё, чтобы собрать современное веб-, мобильное или AI-приложение — без проприетарных SDK и боли.
Что внутри:
⚙️ Хостинг Postgres с realtime-синхронизацией
🧩 Автогенерация REST и GraphQL API
🔐 Аутентификация и авторизация через JWT
⚡ Edge-функции и серверные триггеры
📦 Хранилище файлов с поддержкой S3
🧠 AI-инструменты: векторные индексы, эмбеддинги, семантический поиск
🪶 Всё open source и доступно для self-host.
По сути это Firebase-опыт, но построенный на «взрослых» open-source технологиях:
PostgreSQL, Elixir, GoTrue, PostgREST, pg_graphql.
Платформа, где можно запустить идею, вырастить продукт и не упереться в чьи-то закрытые лимиты.
#Postgres #OpenSource #Backend #AI #GraphQL #Realtime #FirebaseAlternative
https://github.com/supabase/supabase
❤5👍2👎2🔥2