Python/ django
63.2K subscribers
2.32K photos
151 videos
48 files
3.05K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔬MedRAX: новаторский ИИ-агент, разработанный для медицинских задач!

Что такое MedRAX?

MedRAX - это первый универсальный ИИ-агент, который объединяет современные инструменты для анализа рентгеновских снимков грудной клетки и мультимодальные большие языковые модели в единую структуру, позволяющую динамически обосновывать сложные медицинские запросы без дополнительного обучения.

🎯 Чем хорош именно MedRAX?

Хотя специализированные модели ИИ отлично справляются с конкретными задачами рентгенографии грудной клетки, они часто не справляются с комплексным анализом и могут выдавать неточные рекомендации . Многим медицинским работникам нужна единая, надежная система, способная обрабатывать сложные запросы, сохраняя при этом точность. MedRAX призван стать таким инструментом

🛠️ Интегрированные инструменты:


- Визуальный контроль качества: CheXagent и LLaVA-Med
- Сегментация: MedSAM & ChestX-Det
- Формирование отчетов: CheXpert Plus
- Классификация: TorchXRayVision
- Grounding Maira-2
- Синтетические данные: RoentGen

💡 Ключевые особенности:

- Бесшовная интеграция специализированных медицинских инструментов с мультимодальными рассуждениями на основе больших языковых моделей.
- Динамическая оркестровка: Интеллектуальный выбор и координация инструментов для сложных запросов.
- Клиническая направленность: Разработан для реальных медицинских процессов.

📊 ChestAgentBench:

Разработчики также выпустили ChestAgentBench, комплексный эталон медицинского агента, созданный на основе 675 клинических случаев, проверенных экспертами, и включающий 2500 сложных медицинских запросов по 7 категориям.

🎉 Результаты говорят сами за себя:
- 63,1% точности на ChestAgentBench
- Sota результативность на CheXbench
- Превосходит как универсальные, так и специализированные медицинские модели

Paper: https://arxiv.org/abs/2502.02673
Github: https://github.com/bowang-lab/MedRAX

@ai_machinelearning_big_data


#ai #agents #ml #opensource #med #medicine
🔥11👍75
🧭 LLMRouter - умная маршрутизация запросов между LLM

UIUC (ULab) выложили LLMRouter - проект про то, что скоро станет стандартом в AI-продуктах:

не выбирать “одну лучшую модель”,
а маршрутизировать запросы между несколькими LLM так, чтобы было:
- дешевле
- быстрее
- точнее

Идея простая:
разные модели сильны в разном.

Одна лучше пишет код, другая - рассуждает, третья - дешёвая для рутины.
Но большинство продуктов до сих пор делают тупо:
“все запросы → одна LLM”.

LLMRouter делает наоборот:
- анализирует входной запрос
- оценивает сложность / тип задачи
- выбирает подходящую модель
- может учитывать цену, latency, качество, политики

В итоге:
обычные вопросы идут в дешёвую модель
сложные reasoning-задачи - в сильную
код/инструменты - в специализированную
и всё это автоматически

Почему это важно:
как только у тебя 3-5 моделей (OpenAI/Anthropic/Gemini/open-source),
маршрутизация превращается в экономию десятков тысяч долларов в месяц.

Короче: это “load balancer” для LLM, но с мозгами.

GitHub: https://github.com/ulab-uiuc/LLMRouter
#LLM #AI #Routing #Agents #MLOps

@pythonl
👍103🔥2