Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Реализация ИИ-ресерчера, который непрерывно ищет информацию по запросу пользователя, пока система не убедится, что собрала все необходимые данные.
Для этого он использует несколько сервисов:
- SERPAPI: Для выполнения поиска в Google.
- Jina: Для получения и извлечения содержимого веб-страниц.
- OpenRouter (модель по умолчанию: anthropic/claude-3.5-haiku): Взаимодействует с LLM для генерации поисковых запросов, оценки релевантности страниц и понимания контекста.
- Итеративный цикл исследования: Система итеративно уточняет свои поисковые запросы.
- Асинхронная обработка: Поиск, парсинг веб-страниц и оценка контекста - выполняются параллельно для повышения скорости.
- Фильтрация дубликатов: Агрегирует и дедуплицирует ссылки в каждом цикле, проверяя, что одна и та же информация не будет обработана дважды.
▪ Github
▪Google Colab
@ai_machinelearning_big_data
#opensource #llm #ai #ml #DeepResearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍6🔥2
Forwarded from Machinelearning
Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.
✨ Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.
pip install llm-reasoner
Пример с кодом:
from llm_reasoner import ReasonChain
import asyncio
async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)
# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)
asyncio.run(main())
@ai_machinelearning_big_data
#llm #ml #ai #opensource #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3
Forwarded from Machinelearning
🚀 VS Code трансформируется в опенсорнсый ИИ-редактор!
Команда Visual Studio Code объявила о планах трансформировать VS Code в редактор с открытым исходным кодом для работы с ИИ.
Конкуренция - двигатели прогресса!Где-то напряглась команда Cursor 🤓
🔗 Подробности: aka.ms/open-source-ai-editor
#VSCode #OpenSource #ИИ #Разработка #Сообщество
Команда Visual Studio Code объявила о планах трансформировать VS Code в редактор с открытым исходным кодом для работы с ИИ.
Конкуренция - двигатели прогресса!
🔗 Подробности: aka.ms/open-source-ai-editor
#VSCode #OpenSource #ИИ #Разработка #Сообщество
🔥10👍5❤1👎1🤔1
Forwarded from Machinelearning
🗣 Qwen3-TTS - мощный open-source релиз (voice design + клонирование голоса)
Qwen официально выпустили Qwen3-TTS и полностью открыли всю линейку моделей - Base / CustomVoice / VoiceDesign.
Что внутри:
- 5 моделей (0.6B и 1.8B классы)
- Free-form Voice Design - генерация/редаквтирование голоса по описанию
- Voice Cloning - клонирование голоса
- 10 языков
- 12Hz tokenizer - сильная компрессия аудио без сильной потери качества
- полная поддержка fine-tuning
- заявляют SOTA качество на ряде метрик
Раньше лучшие генераторы были в закрытых API, а теперь появляется полноценный open-source стек TTS, где можно:
- обучать под домен,
- делать кастомные голоса,
- и не зависеть от провайдера.
▪GitHub: https://github.com/QwenLM/Qwen3-TTS
▪Hugging Face: https://huggingface.co/collections/Qwen/qwen3-tts
▪Демо (HF): https://huggingface.co/spaces/Qwen/Qwen3-TTS
▪Блог: https://qwen.ai/blog?id=qwen3tts-0115
▪Paper: https://github.com/QwenLM/Qwen3-TTS/blob/main/assets/Qwen3_TTS.pdf
@ai_machinelearning_big_data
#AI #TTS #Qwen #OpenSource #SpeechAI
Qwen официально выпустили Qwen3-TTS и полностью открыли всю линейку моделей - Base / CustomVoice / VoiceDesign.
Что внутри:
- 5 моделей (0.6B и 1.8B классы)
- Free-form Voice Design - генерация/редаквтирование голоса по описанию
- Voice Cloning - клонирование голоса
- 10 языков
- 12Hz tokenizer - сильная компрессия аудио без сильной потери качества
- полная поддержка fine-tuning
- заявляют SOTA качество на ряде метрик
Раньше лучшие генераторы были в закрытых API, а теперь появляется полноценный open-source стек TTS, где можно:
- обучать под домен,
- делать кастомные голоса,
- и не зависеть от провайдера.
▪GitHub: https://github.com/QwenLM/Qwen3-TTS
▪Hugging Face: https://huggingface.co/collections/Qwen/qwen3-tts
▪Демо (HF): https://huggingface.co/spaces/Qwen/Qwen3-TTS
▪Блог: https://qwen.ai/blog?id=qwen3tts-0115
▪Paper: https://github.com/QwenLM/Qwen3-TTS/blob/main/assets/Qwen3_TTS.pdf
@ai_machinelearning_big_data
#AI #TTS #Qwen #OpenSource #SpeechAI
❤2👍2🔥1