Forwarded from Ivan Begtin (Ivan Begtin)
Можно ли предсказать голосование по фотографии? А если это панорамная фотография?
Исследователи из Стенфордского университета проанализировали 50 миллионов фотографий из Google Street View [1]
и научились определять типы автомобилей и, соответственно, предсказывать голосования в местах где они сделаны.
Всего система умеет предсказывать с высокой точностью уровень доходов, расовые признаки, образование и привычки в голосовании с детальностью до почтового индекса (ZIP кода).
Все это социологам и в России на заметку, кроме Google Street View в России ещё есть Яндекс Панорамы и алгоритмы позволили бы провести реальные исследования устройства российского общества.
Подробнее об исследовании [2]
Ссылки:
[1] https://www.nytimes.com/2017/12/31/technology/google-images-voters.html
[2] http://www.pnas.org/content/114/50/13108.full.pdf
#opendata #data #algorithms
Исследователи из Стенфордского университета проанализировали 50 миллионов фотографий из Google Street View [1]
и научились определять типы автомобилей и, соответственно, предсказывать голосования в местах где они сделаны.
Всего система умеет предсказывать с высокой точностью уровень доходов, расовые признаки, образование и привычки в голосовании с детальностью до почтового индекса (ZIP кода).
Все это социологам и в России на заметку, кроме Google Street View в России ещё есть Яндекс Панорамы и алгоритмы позволили бы провести реальные исследования устройства российского общества.
Подробнее об исследовании [2]
Ссылки:
[1] https://www.nytimes.com/2017/12/31/technology/google-images-voters.html
[2] http://www.pnas.org/content/114/50/13108.full.pdf
#opendata #data #algorithms
Nytimes
How Do You Vote? 50 Million Google Images Give a Clue
Artificial intelligence is making it possible for Street Views to be mined for insights about the economy, politics and human behavior — just as text mining has done for years.
Forwarded from Ivan Begtin (Ivan Begtin)
В последние месяцы у меня было много разговоров о том как государство использует или могло бы использовать данные, современные алгоритмы и, в будущем, искусственный интеллект.
Более всего, разумеется, упоминаются самые благие начинания - от повышения эффективности бюрократического аппарата, до повышения качества работы с госфинансами.
Но самые масштабные, самые серьёзные, самые масштабные области применения, конечно же совершенно в другом. Они в обработке бесконечного объёма данных с возможностью отслеживания любых действий каждого человека.
Правительство США в рамках программы IARPA финансирует две исследовательские программы Finder [1], Alldain Video [2] и Deep Intermodal Video Analytics (DIVA) [3].
Finder - это программа по извлечению геолокационных данных из фотографий без соответствующей информации в EXIF. Например, если пользователь запретил публиковать геоданные.
Alladin Video - это извлечение знаний/данных из видеозаписей на популярных видеохостингах. Это распознавание лиц, объектов, событий,
DIVA - это распознавание лиц и активности для потокового видео (в основном камер наблюдения) с автоматическим направлением уведомлений о событиях.
Отличие США от других стран лишь в лучшей организации научной составляющей этой работы, в остальном же важный интерес всех более менее крупных (богатых) государств не в оптимизации системы управления, а в тотальной слежке.
Ссылки:
[1] https://www.iarpa.gov/index.php/research-programs/finder
[2] https://www.iarpa.gov/index.php/research-programs/finder
[3] https://www.iarpa.gov/index.php/research-programs/diva
#data #algorithms
Более всего, разумеется, упоминаются самые благие начинания - от повышения эффективности бюрократического аппарата, до повышения качества работы с госфинансами.
Но самые масштабные, самые серьёзные, самые масштабные области применения, конечно же совершенно в другом. Они в обработке бесконечного объёма данных с возможностью отслеживания любых действий каждого человека.
Правительство США в рамках программы IARPA финансирует две исследовательские программы Finder [1], Alldain Video [2] и Deep Intermodal Video Analytics (DIVA) [3].
Finder - это программа по извлечению геолокационных данных из фотографий без соответствующей информации в EXIF. Например, если пользователь запретил публиковать геоданные.
Alladin Video - это извлечение знаний/данных из видеозаписей на популярных видеохостингах. Это распознавание лиц, объектов, событий,
DIVA - это распознавание лиц и активности для потокового видео (в основном камер наблюдения) с автоматическим направлением уведомлений о событиях.
Отличие США от других стран лишь в лучшей организации научной составляющей этой работы, в остальном же важный интерес всех более менее крупных (богатых) государств не в оптимизации системы управления, а в тотальной слежке.
Ссылки:
[1] https://www.iarpa.gov/index.php/research-programs/finder
[2] https://www.iarpa.gov/index.php/research-programs/finder
[3] https://www.iarpa.gov/index.php/research-programs/diva
#data #algorithms
www.iarpa.gov
Finder
The Intelligence Advanced Research Projects Activity (IARPA) invests in high-risk/high-payoff research programs that have the potential to provide our nation with an overwhelming intelligence advantage over future adversaries.
Forwarded from Ivan Begtin (Ivan Begtin)
На Medium статья из Washington Post о использовании Amazon Rekognition System для распознавания лиц полицией [1], с большим числом отсылок на публичные и государственные исследования и внедрение технологий идентификаций по лицам. Алгоритмы пока ещё не дотягивают до того уровня когда им можно безоговорочно доверять причем тут срабатывает страновая специфика и тот же алгоритм Amazon не справляется с точным определением пола для людей с темной кожей и с распознаванием лиц в их случае.
Разница во внедрение систем распознавания лиц в разных странах лишь в публичности, хотя бы частичной, алгоритмов. В США они проходят тестирование в NIST, и иногда производители раскрывают модели распознавания. В Китае, в России, во многих других странах вопрос публичности алгоритмов распознавания лиц и ошибки при идентификации даже не поднимаются.
А что, серьёзно, хоть кто-то ещё верит что к 2025 году останется хоть одна гос-камера не оборудованная идентфикацией лиц? или то что на каждом полицейском не будет камеры в режиме непрерывной записи в течение рабочего дня?
Ссылки:
[1] https://medium.com/thewashingtonpost/amazon-facial-id-software-used-by-police-falls-short-on-accuracy-and-bias-research-finds-43dc6ee582d9
#algorithms
Разница во внедрение систем распознавания лиц в разных странах лишь в публичности, хотя бы частичной, алгоритмов. В США они проходят тестирование в NIST, и иногда производители раскрывают модели распознавания. В Китае, в России, во многих других странах вопрос публичности алгоритмов распознавания лиц и ошибки при идентификации даже не поднимаются.
А что, серьёзно, хоть кто-то ещё верит что к 2025 году останется хоть одна гос-камера не оборудованная идентфикацией лиц? или то что на каждом полицейском не будет камеры в режиме непрерывной записи в течение рабочего дня?
Ссылки:
[1] https://medium.com/thewashingtonpost/amazon-facial-id-software-used-by-police-falls-short-on-accuracy-and-bias-research-finds-43dc6ee582d9
#algorithms
Medium
Amazon Facial-ID Software Used by Police Falls Short on Accuracy and Bias, Research Finds
The new research is raising concerns about how biased results could tarnish the artificial-intelligence technology’s exploding use by…