Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Deutsche Bank предупреждает: нынешний рост инвестиций в ИИ неустойчив.
Расходы на дата-центры и оборудование удерживают США от рецессии, но без них рост ВВП близок к нулю. Goldman оценивает капзатраты в $368 млрд к августу 2025 года.
К 2030 году отрасли потребуется $2 трлн годовой выручки, но прогнозируется дефицит в $800 млрд. Продуктивность от ИИ придёт, но слишком медленно, чтобы оправдать такие масштабы инвестиций.
Fortune
KAT-Dev-32B достигает 62,4% на SWE-Bench Verified, входя в топ-5 среди всех open-source моделей.
KAT-Coder идёт ещё дальше - 73,4%, что ставит его в один ряд с ведущими проприетарными решениями.
HF
InclusionAI анонсировала Ring-flash-linear-2.0, открытое решение с комбинированным вниманием (линейным + стандартным). При активации лишь 6,1 млрд параметров она демонстрирует производительность, сопоставимую с плотной моделью на 40 млрд параметров.
Модель основана на Ling-flash-base-2.0 и дообучена на 1 триллионе токенов. Благодаря использованию MoE и гибридной архитектуре она достигает почти линейной временной сложности и устойчивого потребления памяти - что ускоряет и удешевляет инференс.
Ring-flash-linear-2.0 поддерживает контексты длиной до 128 000 токенов, показывая конкурентные результаты в задачах рассуждения, математики, программирования и генерации текста.
Модель распространяется под лицензией MIT.
HF
В Science Magazine опубликовано исследование, которое описывает новую технологию редактирования ДНК. Она позволяет вносить крупные и точные изменения прямо в нужное место генома человека — то, чего не могли обеспечить существующие методы вроде CRISPR.
CRISPR работает грубо: разрезает ДНК и надеется, что клетка правильно её восстановит. Более точные версии редактируют лишь крошечные участки - десятки или сотню «букв» ДНК. Но большинство болезней связано не с одной мутацией, а с распределёнными изменениями по всему геному.
Учёные нашли решение в бактериальных «прыгающих генах» - так называемых мостовых РНК. Они позволяют безопасно и точно вставлять, удалять или переставлять фрагменты длиной до 1 миллиона пар оснований.
В эксперименте новая технология исправила ДНК-повторы, вызывающие атаксию Фридрейха - редкое неврологическое заболевание. Тот же подход можно применить к болезни Хантингтона и другим тяжёлым наследственным патологиям.
В институте Arc уверены: комбинация их ДНК-модели Evo (для проектирования «здоровых» последовательностей) и метода Bridge recombination (для внедрения изменений) может стать основой будущей «Тьюринговой машины для биологии» — системы, способной переписывать геном с высокой точностью.
Paper
Лицо сохраняется точным, а движения выглядят плавно и естественно.
Главное новшество - два специальных адаптера. ID-adapter закрепляет лицо во всех кадрах, чтобы оно не «менялось» при генерации, а Ref-adapter переносит детали исходного фото - волосы, глаза, текстуру кожи.
Lynx построена на Diffusion Transformer и обучена на базе из 50,2 млн пар изображений и видео с разными выражениями лица, светом и фоном. Это помогает модели уверенно сохранять идентичность человека даже в сложных условиях.
Моделька выйдет персонализированное видео высокого качества, где совпадают лицо, мимика и мелкие детали внешности.
byteaigc
С 10 по 14 ноября участников ждут ежедневные лекции, практические задания и финальный проект для портфолио. В программе — основы архитектуры агентов, работа с Tool Use и API, контекст-инженеринг и память, метрики качества и оптимизация, а также создание первой мультиагентной системы по протоколу Agent2Agent. Регистрация открыта, участие доступно всем без отбора.
Rsvp
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2🔥1
Forwarded from Machinelearning
OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.
Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.
В основе OmniVinci 3 компонента:
Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.
Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.
Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.
В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.
В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.
Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).
@ai_machinelearning_big_data
#AI #ML #NVIDIA #OmniVinci
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🔥1🤯1
Forwarded from Machinelearning
GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.
Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.
Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥1🥰1🤡1