Top Python libraries `22
by @tryolabs
link: https://tryolabs.com/blog/2022/12/26/top-python-libraries-2022
#python #tools
by @tryolabs
link: https://tryolabs.com/blog/2022/12/26/top-python-libraries-2022
#python #tools
Tryolabs
Top Python libraries of 2022
There are so many amazing Python libraries and tools out every year that it's hard to keep track of them all. That's why we share with you our hand-picked selection of our best picks.
👍37🔥13
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier или PCA из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21❤4👍3🤡1
Forwarded from Neural Networks | Нейронные сети
🌍🚀 Многоязычная модель перевода Hunyuan-MT
Hunyuan-MT — это мощная модель перевода, поддерживающая 33 языка, включая редкие языки Китая. Она включает в себя как базовую модель Hunyuan-MT-7B, так и ансамблевую модель Hunyuan-MT-Chimera, обеспечивая высокое качество перевода и выдающиеся результаты на международных конкурсах.
🚀Основные моменты:
- Первое место в 30 из 31 категории на WMT25.
- Лидер по производительности среди моделей аналогичного масштаба.
- Первая открытая ансамблевая модель перевода.
- Комплексная структура обучения для достижения SOTA результатов.
📌 GitHub: https://github.com/Tencent-Hunyuan/Hunyuan-MT
#python
Hunyuan-MT — это мощная модель перевода, поддерживающая 33 языка, включая редкие языки Китая. Она включает в себя как базовую модель Hunyuan-MT-7B, так и ансамблевую модель Hunyuan-MT-Chimera, обеспечивая высокое качество перевода и выдающиеся результаты на международных конкурсах.
🚀Основные моменты:
- Первое место в 30 из 31 категории на WMT25.
- Лидер по производительности среди моделей аналогичного масштаба.
- Первая открытая ансамблевая модель перевода.
- Комплексная структура обучения для достижения SOTA результатов.
📌 GitHub: https://github.com/Tencent-Hunyuan/Hunyuan-MT
#python
GitHub
GitHub - Tencent-Hunyuan/Hunyuan-MT
Contribute to Tencent-Hunyuan/Hunyuan-MT development by creating an account on GitHub.