Кстати-кстати-кстати, спецкурс-то по барицентрическим координатам стартовал! Зарегистрировалось на открытую неделю пока всего 164 человека...
Первая лекция уже давно на платформе и многие начали присылать первые решения задач. Стараюсь оперативно все проверять... но сами понимаете...
Скажу вам по секрету, за решенные задачи на открытой неделе можно будет получить скидку на основной интенсив! Подробности ищите очень скоро на канале Олимпиадная математика ВсОШ.
Первая лекция уже давно на платформе и многие начали присылать первые решения задач. Стараюсь оперативно все проверять... но сами понимаете...
Скажу вам по секрету, за решенные задачи на открытой неделе можно будет получить скидку на основной интенсив! Подробности ищите очень скоро на канале Олимпиадная математика ВсОШ.
✍19👍4
Из точки пересечения двух окружностей одновременно по ним стартовали два велосипедиста с одинаковыми угловыми скоростями. Чем может являться геометрическое место середин отрезков, соединяющих двух велосипедистов?
Anonymous Quiz
20%
окружностью
20%
окружностью или точкой
8%
окружностью, точкой или эллипсом
14%
окружностью, точкой или отрезком
39%
окружностью, точкой, эллипсом или отрезком
👍25😁9🤡2
Благодаря каналу Geometry Ukraine узнал некоторое время назад очень классную задачу про пару равносторонних треугольников с общей вершиной (см. картинку сверху — на ней отмечены центры треугольников).
А сегодня благодаря Кириллу узнал, что у задачи есть хорошее обобщение (картинка снизу). Два подобный треугольника сцеплены вершиной и на этот раз отмечены ортоцентры.
А сегодня благодаря Кириллу узнал, что у задачи есть хорошее обобщение (картинка снизу). Два подобный треугольника сцеплены вершиной и на этот раз отмечены ортоцентры.
🔥49❤8✍7❤🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Всеми этими разговорами навеяло... две леммы о велосипедистах.
🔥45❤15🤣11❤🔥2✍1💯1
Пытался узнать, почему изодинамические центры так называются. Была у меня одна гипотеза, но она как-то не оправдалась. Видимо, такое название им дал Neuberg в сноске к статье про гармонический четырехугольник. Вообще там какой-то веселый источник в стиле "Решение задач по переписке + Статьи + задачи экзаменов", очень напоминает Квант, но без картинок...
🤝12✍5
Моя неоправдавшаяся гипотеза, почему изодинамические центры (точки Аполлония) так называются: это такие центры треугольника, которые сохраняются при инверсиях (а на самом деле и в более широком классе отображений плоскости). То есть если точки A, B, C перешли в точки A', B', C' то точка Аполлония треугольника ABC перешла в точку Аполлония A'B'C'.
🔥9🤯2✍1👍1
Прекрасные новости пришли с фронта умных чайников. AlphaProof решил все некомбинаторные задачи IMO-2024 и завоевал серебряную медаль!
https://www.newscientist.com/article/2441450-deepmind-ai-gets-silver-medal-at-international-mathematical-olympiad/
https://www.newscientist.com/article/2441450-deepmind-ai-gets-silver-medal-at-international-mathematical-olympiad/
New Scientist
DeepMind AI gets silver medal at International Mathematical Olympiad
AlphaProof, an AI from Google DeepMind, came close to matching the top participants in a prestigious competition for young mathematicians
❤23🤯12🔥2😁2🏆2✍1👏1
Forwarded from Геометрия-канал (knamprihodilinoneseichas knamprihodilinoneseichas)
O,H - центр описанной окружности и ортоцентр оранжевого треугольника. У задачи есть очень изящное решение (как всегда)
👍15✍2
Фуф! Открытая неделя по барицентарам закончилась! Это был челлендж и для меня тоже, потому что кроме записи лекций и проведения разборов надо было еще и проверять много всего. За каждый плюсик участники получали по 100 даброкоинов, которые конвертировались прямо сегодня в рубли по курсу 1 дбк = 5,77 р. Их можно потратить на оплату интенсивной недели.
Сам интенсивный курс стартует уже завтра. Основной целью я ставлю рассказать, как можно классно работать с окружностями в барицентрических координатах. Это, кажется, мало кто знает)
Сам интенсивный курс стартует уже завтра. Основной целью я ставлю рассказать, как можно классно работать с окружностями в барицентрических координатах. Это, кажется, мало кто знает)
❤21🏆7🔥3👍2🌚1
Forwarded from Geometry Weekly
#51 (Окружной этап ВсОШ 2000, 11.3)
Доказать, что красная окружность касается MN
Доказать, что красная окружность касается MN
👍41✍7😍2👎1🤮1👌1🖕1
This media is not supported in your browser
VIEW IN TELEGRAM
Красный, синий и зеленый углы пропорциональны соответствующим углам треугольника. Точки пересечения называются точками Хофстедтера.
😁42✍14❤5❤🔥3👍2
Forwarded from Олимпиадная математика ВсОШ | Дабромат
⬜️ Финал олимпиады им. Шарыгина
Олимпиада имени И.Ф Шарыгина — это престижная геометрическая олимпиада для школьников 8–10 классов. Организатором выступает МЦНМО (Московский центр непрерывного математического образования).
Игорь Фёдорович Шарыгин — советский и российский математик и педагог, специалист по элементарной геометрии, популяризатор науки, автор учебников и пособий для школьников.
После окончания механико-математического факультета Московского государственного университета, Шарыгин остался в аспирантуре, а затем начал свою педагогическую карьеру в МГУ.
На протяжении многих лет Игорь Федорович посвятил себя не только преподаванию, но и популяризации математики. Он стал автором множества учебников и методических пособий, которые пользовались огромной популярностью и использовались в школах по всей стране.
В память об Игоре Фёдоровиче Шарыгине ряд российских научных организаций и учебных заведений решили ежегодно, начиная с 2005 года, проводить геометрическую олимпиаду.
Финальный тур 20-й олимпиады им. Шарыгина состоялся 30 июля - 2 августа. На решение задач участникам 8-10 классов отводилось два дня: 31 июля и 1 августа.
На сайте вы можете посмотреть с задания прошлых лет, а мы делимся с вами условиями этого года.
В комментариях можно найти решения👇🏻
Олимпиада имени И.Ф Шарыгина — это престижная геометрическая олимпиада для школьников 8–10 классов. Организатором выступает МЦНМО (Московский центр непрерывного математического образования).
Игорь Фёдорович Шарыгин — советский и российский математик и педагог, специалист по элементарной геометрии, популяризатор науки, автор учебников и пособий для школьников.
После окончания механико-математического факультета Московского государственного университета, Шарыгин остался в аспирантуре, а затем начал свою педагогическую карьеру в МГУ.
На протяжении многих лет Игорь Федорович посвятил себя не только преподаванию, но и популяризации математики. Он стал автором множества учебников и методических пособий, которые пользовались огромной популярностью и использовались в школах по всей стране.
В память об Игоре Фёдоровиче Шарыгине ряд российских научных организаций и учебных заведений решили ежегодно, начиная с 2005 года, проводить геометрическую олимпиаду.
Финальный тур 20-й олимпиады им. Шарыгина состоялся 30 июля - 2 августа. На решение задач участникам 8-10 классов отводилось два дня: 31 июля и 1 августа.
На сайте вы можете посмотреть с задания прошлых лет, а мы делимся с вами условиями этого года.
В комментариях можно найти решения👇🏻
✍20👍6🔥2❤1
Говорят, стартовала Летняя конференция Турнира Городов. Там есть классный геометрический проект про точки Шиффлера. Пока традиционно проект выложен не весь. Не знаю как вам, а мне прям интересно! Планирую пару вечеров посидеть-порешать. У проекта появился свой телеграм-канал, в котором, видимо, будут публиковаться иллюстрации к задачам и комментарии.
Что такое точка Шиффлера? Помните я как-то писал тут про факт, что если у четырех треугольников ABC, BCD, CDA и DAB три из прямых Эйлера проходят через одну точку, то и четвертая проходит через эту же точку. Так вот, если точка D=I — инцентр треугольника, то как раз выполняются условия и точка пересечения называется точкой Шиффлера треугольника. ГМТ точек D, для которых выполнено свойство, кстати, тоже по-своему интересно: оно состоит из описанной окружности треугольника, бесконечно удаленной прямой и кубики Нойберга.
В честь кого названа точка? Точка названа в честь любителя геометрии Курта Шиффлера, 1896-1996, (см. фото), основателя фирмы, которая специализируется на производстве игрушек, мебели и учебных материалов для детских садов.
Что такое точка Шиффлера? Помните я как-то писал тут про факт, что если у четырех треугольников ABC, BCD, CDA и DAB три из прямых Эйлера проходят через одну точку, то и четвертая проходит через эту же точку. Так вот, если точка D=I — инцентр треугольника, то как раз выполняются условия и точка пересечения называется точкой Шиффлера треугольника. ГМТ точек D, для которых выполнено свойство, кстати, тоже по-своему интересно: оно состоит из описанной окружности треугольника, бесконечно удаленной прямой и кубики Нойберга.
В честь кого названа точка? Точка названа в честь любителя геометрии Курта Шиффлера, 1896-1996, (см. фото), основателя фирмы, которая специализируется на производстве игрушек, мебели и учебных материалов для детских садов.
❤28🔥5🥰4✍2👍2🤯2❤🔥1🤝1