Как работать с данными без экселя и pandas
Должен признаться: я недолюбливаю пандас. Спору нет, штука мощная и вполне подходит для обработки датасетов. Но пользоваться им удобно, только если работаете с пандасом каждый день. Иначе запомнить эти десятки функций и сотни хаотичных параметров невозможно — так и будете каждый раз гуглить простейшие операции.
Авторы пандаса думали о чем угодно, только не об удобстве пользователя. Если не верите — почитайте документацию о джойне таблиц. Выглядит так, как будто космический корабль строим, хотя с точки зрения предметной области задача элементарная.
Возможно, я бы смирился и безропотно учил пандасовское API. Если бы задолго до появления pandas не придумали SQL — лаконичный, продуманный доменный язык, который идеально подходит для работы с данными. Да, для 5% задач пандас окажется лучше, но не вижу смысла поедать кактус в остальных 95%.
К чему это всё. Я запускаю курс «SQLite на практике» о том, как использовать SQLite для повседневной работы с данными:
— Быстро анализировать наборы данных.
— Строить сводные отчеты из нескольких источников.
— Загружать, трансформировать и выгружать данные в нужном формате.
— Удобно работать с JSON-документами, деревьями и графами.
Курс не по основам SQL (этого добра в интернете хватает). Вместо разжевывания синтаксиса и теории фокусируется на конкретных задачах — так участники сразу смогут применять знания в работе. Входные требования: базовое понимание SQL и любовь к командной строке.
Курс платный. Но пока он в разработке, есть места для 10 бета-тестеров — они смогут пройти всю программу бесплатно. Если вам интересно, записывайтесь.
#курс
Должен признаться: я недолюбливаю пандас. Спору нет, штука мощная и вполне подходит для обработки датасетов. Но пользоваться им удобно, только если работаете с пандасом каждый день. Иначе запомнить эти десятки функций и сотни хаотичных параметров невозможно — так и будете каждый раз гуглить простейшие операции.
Авторы пандаса думали о чем угодно, только не об удобстве пользователя. Если не верите — почитайте документацию о джойне таблиц. Выглядит так, как будто космический корабль строим, хотя с точки зрения предметной области задача элементарная.
Возможно, я бы смирился и безропотно учил пандасовское API. Если бы задолго до появления pandas не придумали SQL — лаконичный, продуманный доменный язык, который идеально подходит для работы с данными. Да, для 5% задач пандас окажется лучше, но не вижу смысла поедать кактус в остальных 95%.
К чему это всё. Я запускаю курс «SQLite на практике» о том, как использовать SQLite для повседневной работы с данными:
— Быстро анализировать наборы данных.
— Строить сводные отчеты из нескольких источников.
— Загружать, трансформировать и выгружать данные в нужном формате.
— Удобно работать с JSON-документами, деревьями и графами.
Курс не по основам SQL (этого добра в интернете хватает). Вместо разжевывания синтаксиса и теории фокусируется на конкретных задачах — так участники сразу смогут применять знания в работе. Входные требования: базовое понимание SQL и любовь к командной строке.
Курс платный. Но пока он в разработке, есть места для 10 бета-тестеров — они смогут пройти всю программу бесплатно. Если вам интересно, записывайтесь.
#курс
SQLite для аналитики
или как работать с данными без экселя и pandas
В январе я начал делать курс о том, как использовать SQLite для повседневной работы с данными. И наконец он готов! Вот чему научатся участники:
— Загружать и выгружать данные в разных форматах.
— Находить проблемы в данных и исправлять их.
— Соединять данные так и сяк, чтобы получить нужную информацию.
— Оценивать статистические показатели, которые характеризуют датасет.
— Выбирать данные из JSON-документов любой сложности.
— Быстро работать с большими наборами данных.
— Строить аналитические отчеты с помощью оконных функций.
Входные требования: базовое понимание SQL и любовь к командной строке. Навыки программирования не требуются.
Курс платный, стоит 3000₽. Специально для подписчиков канала до конца недели действует скидка 500₽ по промокоду OHMYPY.
Для всех, кто оставлял заявку на бета-тест — бессрочная скидка 50%, как обещал (пишите в личку @nalgeon).
Первый модуль курса (5 уроков и 13 практических заданий) доступен для всех бесплатно и без регистрации.
Перейти к курсу
#курс
или как работать с данными без экселя и pandas
В январе я начал делать курс о том, как использовать SQLite для повседневной работы с данными. И наконец он готов! Вот чему научатся участники:
— Загружать и выгружать данные в разных форматах.
— Находить проблемы в данных и исправлять их.
— Соединять данные так и сяк, чтобы получить нужную информацию.
— Оценивать статистические показатели, которые характеризуют датасет.
— Выбирать данные из JSON-документов любой сложности.
— Быстро работать с большими наборами данных.
— Строить аналитические отчеты с помощью оконных функций.
Входные требования: базовое понимание SQL и любовь к командной строке. Навыки программирования не требуются.
Курс платный, стоит 3000₽. Специально для подписчиков канала до конца недели действует скидка 500₽ по промокоду OHMYPY.
Для всех, кто оставлял заявку на бета-тест — бессрочная скидка 50%, как обещал (пишите в личку @nalgeon).
Первый модуль курса (5 уроков и 13 практических заданий) доступен для всех бесплатно и без регистрации.
Перейти к курсу
#курс
Утилиты для работы с данными на питоне
В последнее время думаю о таком курсе для прокачки навыков Python. Курс состоит из набора уроков, на каждом уроке воспроизводим на чистом питоне с нуля одну из линуксовых утилит: head, cut, tr, wc, split, paste, sort, uniq, grep, sed. Используем только модули стандартной библиотеки.
Плюсы:
— Одновременно осваиваешь сами утилиты и прокачиваешь питон.
— Учишься эффективно работать со структурами данных.
— Осваиваешь самые разные модули стандартной библиотеки.
— Результат можно использовать в повседневной работе.
— Уроки независимые, можно начинать с любого или выполнять выборочно.
Минусы:
— Курс по питону не сделал только ленивый, лезть в это неохота.
Что думаете?
#курс
В последнее время думаю о таком курсе для прокачки навыков Python. Курс состоит из набора уроков, на каждом уроке воспроизводим на чистом питоне с нуля одну из линуксовых утилит: head, cut, tr, wc, split, paste, sort, uniq, grep, sed. Используем только модули стандартной библиотеки.
Плюсы:
— Одновременно осваиваешь сами утилиты и прокачиваешь питон.
— Учишься эффективно работать со структурами данных.
— Осваиваешь самые разные модули стандартной библиотеки.
— Результат можно использовать в повседневной работе.
— Уроки независимые, можно начинать с любого или выполнять выборочно.
Минусы:
— Курс по питону не сделал только ленивый, лезть в это неохота.
Что думаете?
#курс