AI Image to Video Free Generator
📹✨ Бесплатный генератор AI видео из изображений
Ищете способ преобразовать ваши изображения в потрясающие видео? Попробуйте этот бесплатный генератор! 🚀
Просто загрузите свои фото, и ИИ создаст из них увлекательное видеоповествование. Идеально подходит для соцсетей, презентаций и личных проектов. 🎬
Попробуйте сейчас и откройте для себя новые возможности визуального творчества! 🌟
🔥https://creatus.ai/image-animation-image-to-video
#AI #Видеогенератор #ИскусственныйИнтеллект #Технологии
📹✨ Бесплатный генератор AI видео из изображений
Ищете способ преобразовать ваши изображения в потрясающие видео? Попробуйте этот бесплатный генератор! 🚀
Просто загрузите свои фото, и ИИ создаст из них увлекательное видеоповествование. Идеально подходит для соцсетей, презентаций и личных проектов. 🎬
Попробуйте сейчас и откройте для себя новые возможности визуального творчества! 🌟
🔥https://creatus.ai/image-animation-image-to-video
#AI #Видеогенератор #ИскусственныйИнтеллект #Технологии
CREATUS.AI
Free AI Image Animation Online | Image-to-Video | CREATUS.AI
Create stunning image animations online for free using AI technology. Transform your images into captivating videos with our img2video tool. Try it now!
CyberYozh выпускает новую партию бесплатных курсов про анонимность
Материал, как обычно, ходит по краю, но точно стоит вашего внимания. Вот список новинок:
😎 Proxy для Анонимности — громко заявляя, что сервисы и самодельные VPN — это дыра в вашей анонимности, ребята покажут и расскажут альтернативные варианты, как повысить приватность с помощью цепочек из Proxy, Tor и Whonix в разных комбинациях.
🔒 Компьютерная криминалистика (форензика) — курс, в котором вы узнаете, как можно получить удаленные файлы с защищённых или уничтоженных устройств и носителей.
😉 Шпионские устройства — расскажут про вооружение современных охотников за ублюдками. Дроны, глушилки и другие увлекательные девайсы нацеленные на слежку за целью.
Доступ откроют уже *24 июля*, одновременно с бесплатным онлайн-ивентом, где будут выступать хакеры, детективы и бывшие киберпреступники. Веселые ребята…
Материал, как обычно, ходит по краю, но точно стоит вашего внимания. Вот список новинок:
😎 Proxy для Анонимности — громко заявляя, что сервисы и самодельные VPN — это дыра в вашей анонимности, ребята покажут и расскажут альтернативные варианты, как повысить приватность с помощью цепочек из Proxy, Tor и Whonix в разных комбинациях.
🔒 Компьютерная криминалистика (форензика) — курс, в котором вы узнаете, как можно получить удаленные файлы с защищённых или уничтоженных устройств и носителей.
😉 Шпионские устройства — расскажут про вооружение современных охотников за ублюдками. Дроны, глушилки и другие увлекательные девайсы нацеленные на слежку за целью.
Доступ откроют уже *24 июля*, одновременно с бесплатным онлайн-ивентом, где будут выступать хакеры, детективы и бывшие киберпреступники. Веселые ребята…
🚀 Новая IDE на Rust: Zed теперь доступен для Linux! 🐧
Zed — это мощная среда IDE, разработанная авторами Atom и Tree-sitter, и распространяемая по лицензии GPL. Основываясь на языке Rust, Zed предлагает пользователям:
🔹 Поддержка множества языков
🔹 Подсветка синтаксиса
🔹 Автоматическое выравнивание кода
🔹 Просмотр структуры кода
🔹 Автодополнение
🔹 Инструменты для совместной работы в реальном времени
🔹 Встроенный терминал
🔹 Режим Vim
🔹 Темы оформления
🔍 Уникальные функции Zed:
1. GPU-ускорение с Vulkan: Быстрая загрузка, мгновенное открытие больших файлов и низкая задержка ввода.
2. Интеграция с ChatGPT от OpenAI: Генерация кода, рефакторинг и устранение проблем с помощью ИИ.
3. Ненавязчивая ИИ-интеграция: Взаимодействие с ИИ в отдельной панели, не мешая основной работе.
✒️ Zed — отличный инструмент как для опытных разработчиков, так и для тех, кто только начинает свой путь в программировании. Однако, несмотря на удобства, помните, что ИИ не заменит человеческую изобретательность — GPT предлагает лишь решения, основанные на уже известных данных.
🔗 Подробнее и скачать: https://zed.dev/
#ZedIDE #Rust #Linux #Programming #OpenSource #IDE #ChatGPT
Zed — это мощная среда IDE, разработанная авторами Atom и Tree-sitter, и распространяемая по лицензии GPL. Основываясь на языке Rust, Zed предлагает пользователям:
🔹 Поддержка множества языков
🔹 Подсветка синтаксиса
🔹 Автоматическое выравнивание кода
🔹 Просмотр структуры кода
🔹 Автодополнение
🔹 Инструменты для совместной работы в реальном времени
🔹 Встроенный терминал
🔹 Режим Vim
🔹 Темы оформления
🔍 Уникальные функции Zed:
1. GPU-ускорение с Vulkan: Быстрая загрузка, мгновенное открытие больших файлов и низкая задержка ввода.
2. Интеграция с ChatGPT от OpenAI: Генерация кода, рефакторинг и устранение проблем с помощью ИИ.
3. Ненавязчивая ИИ-интеграция: Взаимодействие с ИИ в отдельной панели, не мешая основной работе.
✒️ Zed — отличный инструмент как для опытных разработчиков, так и для тех, кто только начинает свой путь в программировании. Однако, несмотря на удобства, помните, что ИИ не заменит человеческую изобретательность — GPT предлагает лишь решения, основанные на уже известных данных.
🔗 Подробнее и скачать: https://zed.dev/
#ZedIDE #Rust #Linux #Programming #OpenSource #IDE #ChatGPT
Zed
Zed - The editor for what's next
Zed is a high-performance, multiplayer code editor from the creators of Atom and Tree-sitter.
🚀 Языки программирования для Machine Learning: что выбрать? 🤖
Machine Learning (ML) стремительно преобразует множество сфер нашей жизни. Но какой язык программирования выбрать, чтобы максимально эффективно работать в этой области? Давайте рассмотрим наиболее популярные варианты.
1. Python 🐍
Пожалуй, самый популярный язык для ML благодаря огромному количеству библиотек и фреймворков:
- TensorFlow, Keras, PyTorch: для создания и обучения моделей.
- Pandas, NumPy, Scikit-learn: для работы с данными и их предварительной обработки.
🔹 Почему Python? Прост в изучении, множество открытых ресурсов и сообществ.
2. R 📊
Специализирован для статистики и визуализации данных. Отлично подходит для исследователей и аналитиков:
- Caret, randomForest: для создания моделей.
- ggplot2, Shiny: для визуализации и разработки интерактивных приложений.
🔹 Почему R? Идеален для анализа данных и построения моделей с мощными инструментами визуализации.
3. Java ☕
Широко используется в корпоративных решениях и обладает высокой производительностью:
- Weka, Deeplearning4j: библиотеки для ML.
- Apache Spark MLlib: распределенные вычисления для анализа данных.
🔹 Почему Java? Отличается стабильностью, масштабируемостью и хорош для больших корпоративных проектов.
4. C++ 💻
Изначально используется для проектов, требующих высокой производительности:
- CNTK: фреймворк для обучения глубоких нейронных сетей от Microsoft.
- FastAI: интерфейс к PyTorch для быстрого построения ML-моделей.
🔹 Почему C++? Высокая скорость выполнения и контроль над ресурсами.
5. Julia 📈
Относительно новый язык, который набирает популярность в ML благодаря своей скорости и простоте:
- Flux.jl, MLJ.jl: фреймворки для Machine Learning.
- DataFrames.jl: работа с данными.
🔹 Почему Julia? Высокая производительность и простота синтаксиса, удобство для научных вычислений.
А каким языком программирования пользуетесь вы для проектов в ML? Делитесь в комментариях!👇
#MachineLearning #Python #R #Java #C++ #Julia #DataScience #AI #Programming
Machine Learning (ML) стремительно преобразует множество сфер нашей жизни. Но какой язык программирования выбрать, чтобы максимально эффективно работать в этой области? Давайте рассмотрим наиболее популярные варианты.
1. Python 🐍
Пожалуй, самый популярный язык для ML благодаря огромному количеству библиотек и фреймворков:
- TensorFlow, Keras, PyTorch: для создания и обучения моделей.
- Pandas, NumPy, Scikit-learn: для работы с данными и их предварительной обработки.
🔹 Почему Python? Прост в изучении, множество открытых ресурсов и сообществ.
2. R 📊
Специализирован для статистики и визуализации данных. Отлично подходит для исследователей и аналитиков:
- Caret, randomForest: для создания моделей.
- ggplot2, Shiny: для визуализации и разработки интерактивных приложений.
🔹 Почему R? Идеален для анализа данных и построения моделей с мощными инструментами визуализации.
3. Java ☕
Широко используется в корпоративных решениях и обладает высокой производительностью:
- Weka, Deeplearning4j: библиотеки для ML.
- Apache Spark MLlib: распределенные вычисления для анализа данных.
🔹 Почему Java? Отличается стабильностью, масштабируемостью и хорош для больших корпоративных проектов.
4. C++ 💻
Изначально используется для проектов, требующих высокой производительности:
- CNTK: фреймворк для обучения глубоких нейронных сетей от Microsoft.
- FastAI: интерфейс к PyTorch для быстрого построения ML-моделей.
🔹 Почему C++? Высокая скорость выполнения и контроль над ресурсами.
5. Julia 📈
Относительно новый язык, который набирает популярность в ML благодаря своей скорости и простоте:
- Flux.jl, MLJ.jl: фреймворки для Machine Learning.
- DataFrames.jl: работа с данными.
🔹 Почему Julia? Высокая производительность и простота синтаксиса, удобство для научных вычислений.
А каким языком программирования пользуетесь вы для проектов в ML? Делитесь в комментариях!👇
#MachineLearning #Python #R #Java #C++ #Julia #DataScience #AI #Programming
🚀 julius.ai | Новая степень автоматизации EDA!
Условно бесплатная нейронка на видео демонстрирует потрясающие возможности: обрабатывает таблицу с 6,5K (!) кандидатами с HeadHunter, фильтрует неразработчиков и создает группированные столбчатые диаграммы по грейдам (Junior, Middle, Senior) и языкам (Go, PHP, Python и др.).
👉 Хотите увидеть это в действии?
https://www.youtube.com/@Julius-AI
#llm #gpt
Условно бесплатная нейронка на видео демонстрирует потрясающие возможности: обрабатывает таблицу с 6,5K (!) кандидатами с HeadHunter, фильтрует неразработчиков и создает группированные столбчатые диаграммы по грейдам (Junior, Middle, Senior) и языкам (Go, PHP, Python и др.).
👉 Хотите увидеть это в действии?
https://www.youtube.com/@Julius-AI
#llm #gpt
YouTube
Julius AI
Analyze your data with computational AI ⚡️
Факт-чекинг для LLM: Может ли дообучение на новых данных вызвать галлюцинации?
📚 Основные моменты:
- Дообучение больших языковых моделей (LLM) на новых фактических данных может привести к генерации фактически неверных ответов, известных как галлюцинации.
- Контролируемые исследования в задачах вопросов и ответов (QA) показывают, что LLM сложно быстро усваивать новую информацию через дообучение.
- Примеры новых данных усваиваются значительно медленнее, чем те, которые соответствуют уже известным модели знаниям.
🔍 Результаты:
- По мере постепенного усвоения новой информации через дообучение, склонность LLM к галлюцинациям линейно возрастает.
- Лучшие результаты достигаются, когда модель усваивает большинство известных примеров, но только несколько новых.
- Введение слишком большого количества новой информации во время дообучения может снизить общую точность модели.
⚠️ Выводы:
- Необходимо тщательно балансировать количество новых данных при дообучении, чтобы предотвратить галлюцинации.
- LLM в основном приобретают фактические знания через предобучение, а дообучение оптимизирует использование этих знаний.
🤖 Детали исследования:
- Исследование включает смесь известных и новых примеров во время дообучения.
- Точная категоризация примеров на известные и новые с помощью структуры SliCK помогает оценить поведение модели при обучении.
#LLM #МашинноеОбучение #AIResearch #Дообучение #Галлюцинации
🔗 Читать полную статью
📚 Основные моменты:
- Дообучение больших языковых моделей (LLM) на новых фактических данных может привести к генерации фактически неверных ответов, известных как галлюцинации.
- Контролируемые исследования в задачах вопросов и ответов (QA) показывают, что LLM сложно быстро усваивать новую информацию через дообучение.
- Примеры новых данных усваиваются значительно медленнее, чем те, которые соответствуют уже известным модели знаниям.
🔍 Результаты:
- По мере постепенного усвоения новой информации через дообучение, склонность LLM к галлюцинациям линейно возрастает.
- Лучшие результаты достигаются, когда модель усваивает большинство известных примеров, но только несколько новых.
- Введение слишком большого количества новой информации во время дообучения может снизить общую точность модели.
⚠️ Выводы:
- Необходимо тщательно балансировать количество новых данных при дообучении, чтобы предотвратить галлюцинации.
- LLM в основном приобретают фактические знания через предобучение, а дообучение оптимизирует использование этих знаний.
🤖 Детали исследования:
- Исследование включает смесь известных и новых примеров во время дообучения.
- Точная категоризация примеров на известные и новые с помощью структуры SliCK помогает оценить поведение модели при обучении.
#LLM #МашинноеОбучение #AIResearch #Дообучение #Галлюцинации
🔗 Читать полную статью
Погружаемся в мир AI-творчества! 🌍🤖
Смотрите, как ИИ представляет путешествия. Несколько уникальных фото для вашего вдохновения!
https://telegra.ph/Pogruzhaemsya-v-mir-AI-tvorchestva-07-11
#AIарт #путешествия
Смотрите, как ИИ представляет путешествия. Несколько уникальных фото для вашего вдохновения!
https://telegra.ph/Pogruzhaemsya-v-mir-AI-tvorchestva-07-11
#AIарт #путешествия
Telegraph
Погружаемся в мир AI-творчества! 🌍🤖
Смотрите, как ИИ представляет путешествия. Несколько уникальных фото для вашего вдохновения!
This media is not supported in your browser
VIEW IN TELEGRAM
[Трансформер] на пальцах (буквально) ✍️📺
5-минутный видеоурок
Короткое видео, чтобы объяснить устройство "Трансформеров".
За 5 минут демонстрируется основная математика Трансформеров, с помощью ручки и бумаги!
@machinelearning_ru
5-минутный видеоурок
Короткое видео, чтобы объяснить устройство "Трансформеров".
За 5 минут демонстрируется основная математика Трансформеров, с помощью ручки и бумаги!
@machinelearning_ru
🔬⚡️ Test-Time Training RNN (ТТТ) - новый прорыв в машинном обучении! 🚀
Self-attention справляется с длинным контекстом, но имеет квадратичную сложность. Существующие слои RNN линейно сложны, но ограничены способностью скрытых состояний. Мы предлагаем новый класс слоев моделирования последовательностей с линейной сложностью и выразительными скрытыми состояниями.
💡 Главная идея: сделать скрытое состояние моделью машинного обучения и обновлять его путем самообучения даже на тестовых последовательностях. Наши слои называются Test-Time Training (TTT), и мы предлагаем две реализации: TTT-Linear и TTT-MLP.
👥 Исследования показывают, что TTT-Linear и TTT-MLP превосходят существующие модели. Они эффективно используют длинный контекст и показывают значительную производительность по сравнению с Transformer и Mamba.
📊 TTT-Linear уже быстрее Transformer при контексте 8k и сопоставим с Mamba по времени выполнения. TTT-MLP ориентирован на дальнейшие исследования и решает проблемы с памятью ввода-вывода, открывая новые горизонты для будущих исследований.
Для подробностей и доступа к статье посетите arXiv:
🟡Arxiv
🔗 Код доступен в JAX и PyTorch.
🖥 GitHub for Pytorch Stars: 277 | Issues: 3 | Forks: 12
🖥 GitHub for Jax [ Stars: 129 | Issues: 1 | Forks: 6 ]
Не пропустите этот инновационный шаг в машинном обучении! 🚀
#MachineLearning #RNN #AI #Research #Innovation
Self-attention справляется с длинным контекстом, но имеет квадратичную сложность. Существующие слои RNN линейно сложны, но ограничены способностью скрытых состояний. Мы предлагаем новый класс слоев моделирования последовательностей с линейной сложностью и выразительными скрытыми состояниями.
💡 Главная идея: сделать скрытое состояние моделью машинного обучения и обновлять его путем самообучения даже на тестовых последовательностях. Наши слои называются Test-Time Training (TTT), и мы предлагаем две реализации: TTT-Linear и TTT-MLP.
👥 Исследования показывают, что TTT-Linear и TTT-MLP превосходят существующие модели. Они эффективно используют длинный контекст и показывают значительную производительность по сравнению с Transformer и Mamba.
📊 TTT-Linear уже быстрее Transformer при контексте 8k и сопоставим с Mamba по времени выполнения. TTT-MLP ориентирован на дальнейшие исследования и решает проблемы с памятью ввода-вывода, открывая новые горизонты для будущих исследований.
Для подробностей и доступа к статье посетите arXiv:
🟡Arxiv
🔗 Код доступен в JAX и PyTorch.
🖥 GitHub for Pytorch Stars: 277 | Issues: 3 | Forks: 12
🖥 GitHub for Jax [ Stars: 129 | Issues: 1 | Forks: 6 ]
Не пропустите этот инновационный шаг в машинном обучении! 🚀
#MachineLearning #RNN #AI #Research #Innovation
🚀 Векторные базы данных: простым языком про устройство и принцип работы
⚙️ Проблема
Нужно находить объекты, похожие по характеристикам. Простой подход через поиск совпадений слишком примитивен и не учитывает контексты и синонимы.
👾 Решение в лоб
Сравнение текстов или данных по количеству совпадений недостаточно. Требуется более умный метод для глубокого понимания объектов.
💡 Машинное обучение и векторизация
Машинное обучение решает задачу путем представления объектов (слова, текста, изображения) в виде числовых векторов. Эти вектора помогают компьютерам "понимать" данные. Разные методы, такие как Bag of Words, TF-IDF или Word2Vec, помогают векторизировать объект.
🔥 Векторные базы данных (ВБД)
Векторные базы данных (ВБД) — это NoSQL решения для хранения, индексирования и поиска похожих векторов, обеспечивая:
- Рекомендательные системы (например, рекомендации товаров)
- Поисковые системы (поиск по смысловому содержанию текста)
- Анализ изображений и видео (поиск похожих картинок)
🔍 Как это работает:
1. Преобразование объекта в вектор с помощью векторизатора.
2. Сохранение вектора и метаданных на диск.
📥 Чтение данных
Когда приложение отправляет новый объект для рекомендации:
1. Векторизуем объект той же моделью, получая вектор той же размерности.
2. Ищем наиболее близкий вектор. Возможна предварительная фильтрация по метаданным (например, длина текста > n).
3. Для ускорения поиска используется индексация, замедляющая запись, но делающая чтение быстрее. Разные базы данных могут предлагать различные сортиры и алгоритмы индексации.
Некоторые ВБД поддерживают только хранение, индексацию и чтение, а другие предлагают готовые векторизаторы, избавляя от необходимости писать и обучать свои модели.
#ВБД #МашинноеОбучение #РекомендательныеСистемы #Векторизация #IT #БазыДанных
⚙️ Проблема
Нужно находить объекты, похожие по характеристикам. Простой подход через поиск совпадений слишком примитивен и не учитывает контексты и синонимы.
👾 Решение в лоб
Сравнение текстов или данных по количеству совпадений недостаточно. Требуется более умный метод для глубокого понимания объектов.
💡 Машинное обучение и векторизация
Машинное обучение решает задачу путем представления объектов (слова, текста, изображения) в виде числовых векторов. Эти вектора помогают компьютерам "понимать" данные. Разные методы, такие как Bag of Words, TF-IDF или Word2Vec, помогают векторизировать объект.
🔥 Векторные базы данных (ВБД)
Векторные базы данных (ВБД) — это NoSQL решения для хранения, индексирования и поиска похожих векторов, обеспечивая:
- Рекомендательные системы (например, рекомендации товаров)
- Поисковые системы (поиск по смысловому содержанию текста)
- Анализ изображений и видео (поиск похожих картинок)
🔍 Как это работает:
1. Преобразование объекта в вектор с помощью векторизатора.
2. Сохранение вектора и метаданных на диск.
📥 Чтение данных
Когда приложение отправляет новый объект для рекомендации:
1. Векторизуем объект той же моделью, получая вектор той же размерности.
2. Ищем наиболее близкий вектор. Возможна предварительная фильтрация по метаданным (например, длина текста > n).
3. Для ускорения поиска используется индексация, замедляющая запись, но делающая чтение быстрее. Разные базы данных могут предлагать различные сортиры и алгоритмы индексации.
Некоторые ВБД поддерживают только хранение, индексацию и чтение, а другие предлагают готовые векторизаторы, избавляя от необходимости писать и обучать свои модели.
#ВБД #МашинноеОбучение #РекомендательныеСистемы #Векторизация #IT #БазыДанных
🚀 Векторные базы данных: простым языком про устройство и принцип работы
https://habr.com/ru/companies/tochka/articles/809493/
⚙️ Проблема
Нужно находить объекты, похожие по характеристикам. Простой подход через поиск совпадений слишком примитивен и не учитывает контексты и синонимы.
👾 Решение в лоб
Сравнение текстов или данных по количеству совпадений недостаточно. Требуется более умный метод для глубокого понимания объектов.
💡 Машинное обучение и векторизация
Машинное обучение решает задачу путем представления объектов (слова, текста, изображения) в виде числовых векторов. Эти вектора помогают компьютерам "понимать" данные. Разные методы, такие как Bag of Words, TF-IDF или Word2Vec, помогают векторизировать объект.
🔥 Векторные базы данных (ВБД)
Векторные базы данных (ВБД) — это NoSQL решения для хранения, индексирования и поиска похожих векторов, обеспечивая:
- Рекомендательные системы (например, рекомендации товаров)
- Поисковые системы (поиск по смысловому содержанию текста)
- Анализ изображений и видео (поиск похожих картинок)
🔍 Как это работает:
1. Преобразование объекта в вектор с помощью векторизатора.
2. Сохранение вектора и метаданных на диск.
📥 Чтение данных
Когда приложение отправляет новый объект для рекомендации:
1. Векторизуем объект той же моделью, получая вектор той же размерности.
2. Ищем наиболее близкий вектор. Возможна предварительная фильтрация по метаданным (например, длина текста > n).
3. Для ускорения поиска используется индексация, замедляющая запись, но делающая чтение быстрее. Разные базы данных могут предлагать различные сортиры и алгоритмы индексации.
Некоторые ВБД поддерживают только хранение, индексацию и чтение, а другие предлагают готовые векторизаторы, избавляя от необходимости писать и обучать свои модели.
#ВБД #МашинноеОбучение #РекомендательныеСистемы #Векторизация #IT #БазыДанных
https://habr.com/ru/companies/tochka/articles/809493/
⚙️ Проблема
Нужно находить объекты, похожие по характеристикам. Простой подход через поиск совпадений слишком примитивен и не учитывает контексты и синонимы.
👾 Решение в лоб
Сравнение текстов или данных по количеству совпадений недостаточно. Требуется более умный метод для глубокого понимания объектов.
💡 Машинное обучение и векторизация
Машинное обучение решает задачу путем представления объектов (слова, текста, изображения) в виде числовых векторов. Эти вектора помогают компьютерам "понимать" данные. Разные методы, такие как Bag of Words, TF-IDF или Word2Vec, помогают векторизировать объект.
🔥 Векторные базы данных (ВБД)
Векторные базы данных (ВБД) — это NoSQL решения для хранения, индексирования и поиска похожих векторов, обеспечивая:
- Рекомендательные системы (например, рекомендации товаров)
- Поисковые системы (поиск по смысловому содержанию текста)
- Анализ изображений и видео (поиск похожих картинок)
🔍 Как это работает:
1. Преобразование объекта в вектор с помощью векторизатора.
2. Сохранение вектора и метаданных на диск.
📥 Чтение данных
Когда приложение отправляет новый объект для рекомендации:
1. Векторизуем объект той же моделью, получая вектор той же размерности.
2. Ищем наиболее близкий вектор. Возможна предварительная фильтрация по метаданным (например, длина текста > n).
3. Для ускорения поиска используется индексация, замедляющая запись, но делающая чтение быстрее. Разные базы данных могут предлагать различные сортиры и алгоритмы индексации.
Некоторые ВБД поддерживают только хранение, индексацию и чтение, а другие предлагают готовые векторизаторы, избавляя от необходимости писать и обучать свои модели.
#ВБД #МашинноеОбучение #РекомендательныеСистемы #Векторизация #IT #БазыДанных
Forwarded from Культурный Кавер (Дмитрий)
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Дубляж умер: завирусились видео с нейропереводом актёров на русский — голоса не отличить от настоящих, а губы пугающе точно попадают в речь.
Возможно, скоро мы увидим новую жизнь старых музыкальных клипов на всех языках мира.
#нейрозвук #нейровидео
Возможно, скоро мы увидим новую жизнь старых музыкальных клипов на всех языках мира.
#нейрозвук #нейровидео
🎬 Магия видео генерации теперь для всех: знакомьтесь с Klingai.com! 🚀
Раньше искусственный интеллект, который создавал потрясающие видеоролики, был доступен лишь избранным в Китае. Но времена меняются, и теперь каждый из нас может прикоснуться к этой магии благодаря Klingai.com! 🌐✨
Klingai.com — это суперсовременный генератор видео от топовых китайских разработчиков. 📹 Он позволяет создавать видео выдающегося качества, и всё это с помощью ИИ! 🤖 Да, у сервиса есть свои нюансы, но главное — теперь он открыт для всех желающих! 👐
Так что не упустите шанс проявить своё творчество! Начинать творить прямо сейчас проще простого! 🎨🔥
Заходите на Klingai.com и создавайте свои уникальные видеошедевры! 💡💥
Раньше искусственный интеллект, который создавал потрясающие видеоролики, был доступен лишь избранным в Китае. Но времена меняются, и теперь каждый из нас может прикоснуться к этой магии благодаря Klingai.com! 🌐✨
Klingai.com — это суперсовременный генератор видео от топовых китайских разработчиков. 📹 Он позволяет создавать видео выдающегося качества, и всё это с помощью ИИ! 🤖 Да, у сервиса есть свои нюансы, но главное — теперь он открыт для всех желающих! 👐
Так что не упустите шанс проявить своё творчество! Начинать творить прямо сейчас проще простого! 🎨🔥
Заходите на Klingai.com и создавайте свои уникальные видеошедевры! 💡💥