Scaling Uber’s Apache Hadoop Distributed File System for Growth
Post on how #Uber team handles #Hadoop challenges.
https://eng.uber.com/scaling-hdfs/
#BigData #HDFS
🔗 Scaling Uber’s Hadoop Distributed File System for Growth
Uber's Data Infrastructure team overhauled our approach to scaling our storage infrastructure by incorporating several new features and functionalities, including ViewFs, NameNode garbage collection tuning, and an HDFS load management service.
Post on how #Uber team handles #Hadoop challenges.
https://eng.uber.com/scaling-hdfs/
#BigData #HDFS
🔗 Scaling Uber’s Hadoop Distributed File System for Growth
Uber's Data Infrastructure team overhauled our approach to scaling our storage infrastructure by incorporating several new features and functionalities, including ViewFs, NameNode garbage collection tuning, and an HDFS load management service.
Uber Engineering Blog
Scaling Uber’s Apache Hadoop Distributed File System for Growth
Uber's Data Infrastructure team overhauled our approach to scaling our storage infrastructure by incorporating several new features and functionalities, including ViewFs, NameNode garbage collection tuning, and an HDFS load management service.
Как геокодировать миллион точек на Spark по-быстрому?
#BigData,
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это процедура, которая паре широта-долгота ставит в соответствие адрес или название объекта на карте, к которому принадлежит или близка заданная координатами точка. То есть, берем координаты, скажем такие: @55.7602485,37.6170409, и получаем результат либо «Россия, Центральный федеральный округ, Москва, Театральная площадь, дом такой-то», либо например «Большой театр».
Если на входе адрес или название, а на выходе координаты, то эта операция — прямое геокодирование, об этом мы, надеюсь, поговорим позже.
В качестве исходных данных у нас на входе было примерно 100 или 200 тысяч точек, которые лежали в кластере Hadoop в виде таблицы Hive. Это чтобы был понятен масштаб задачи.
В качестве инструмента обработки в конце концов был выбран Spark, хотя в процессе мы попробовали как MapReduce, так и Apache Crunch. Но это отдельная история, возможно заслуживающая своего поста.
🔗 Как геокодировать миллион точек на Spark по-быстрому?
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это про...
#BigData,
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это процедура, которая паре широта-долгота ставит в соответствие адрес или название объекта на карте, к которому принадлежит или близка заданная координатами точка. То есть, берем координаты, скажем такие: @55.7602485,37.6170409, и получаем результат либо «Россия, Центральный федеральный округ, Москва, Театральная площадь, дом такой-то», либо например «Большой театр».
Если на входе адрес или название, а на выходе координаты, то эта операция — прямое геокодирование, об этом мы, надеюсь, поговорим позже.
В качестве исходных данных у нас на входе было примерно 100 или 200 тысяч точек, которые лежали в кластере Hadoop в виде таблицы Hive. Это чтобы был понятен масштаб задачи.
В качестве инструмента обработки в конце концов был выбран Spark, хотя в процессе мы попробовали как MapReduce, так и Apache Crunch. Но это отдельная история, возможно заслуживающая своего поста.
🔗 Как геокодировать миллион точек на Spark по-быстрому?
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это про...
Хабр
Как геокодировать миллион точек на Spark по-быстрому?
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это про...