Neural Networks | Нейронные сети
11.6K subscribers
805 photos
184 videos
170 files
9.46K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Yolo v4 (v3/v2) - Windows and Linux version of Darknet Neural Networks for object detection (Tensor Cores are used) http://pjreddie.com/darknet/

https://github.com/AlexeyAB/darknet
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 AlexeyAB/darknet
Windows and Linux version of Darknet Yolo v4 (v3/v2) Neural Networks for object detection (Tensor Cores are used) - AlexeyAB/darknet
🎥 How to convert text to speech using API | AWS | AI | Deep Learning
👁 1 раз 3321 сек.
At Aleta Software Labs our goal is to achieve deep connection between AI and Human Beings.
.
.
In this tutorial the text to speech conversion is done by the Deep Learning model provided by
the AWS. And the service offered by the AWS accordingly is called as Amazon Polly.
The wide range TTS is yet to come . This is only a glimpse of how to make it working.
Using Amazon Polly these type of applications can be brought to production level within a matter of hours.
Lambda Functions available in the following li
🎥 Top 10 Algorithms in Data Mining (2008)
👁 1 раз 706 сек.
WEBSITE: databookuw.com

This lecture highlights the top 10 algorithms of data mining circa 2008. This includes a variety of supervised and unsupervised methods and precedes the deep neural network revolution circa 2012.
🎥 Football Video Analysis Using Deep Learning
👁 2 раз 2116 сек.
The talk will present how to combine classical computer vision techniques with deep learning methods to automate analysis of football videos. It'll cover efficient methods for ball and player detection and recognition in long shot video coverage of football games.


EVENT:
PyData Warsaw 2019


SPEAKER:
Jacek Komorowski


PUBLICATION PERMISSIONS:
PyData provided Coding Tech with the permission to republish PyData talks


CREDITS:
PyData YouTube channel: https://www.youtube.com/channel/UCOjD18EJYcsBog4IozkF_7
🎥 Studying software evolution using topic models
👁 1 раз 3331 сек.
Тематическое моделирование широко применяется в самых различных областях науки и ставит перед собой задачу выделения оределённых «тем» в наборе текстовых документов. Традиционно оно связано с естественными языками, но может быть успешно применено и для кода. Кроме моделирования тем в статике, темы часто моделируются в динамике — это используется, например, для визуализации изменений в тематике научных журналов, популярности научных статей на определённые темы или даже для отслеживания популярности новостей
🎥 Solving PDEs with the FFT, Part 2 [Python]
👁 1 раз 924 сек.
This video continues to show how to solve PDEs with the FFT in Python.

Book Website: http://databookuw.com
Book PDF: http://databookuw.com/databook.pdf

These lectures follow Chapter 2 from:
"Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz

Amazon: https://www.amazon.com/Data-Driven-Science-Engineering-Learning-Dynamical/dp/1108422098/

Brunton Website: eigensteve.com
🎥 Машинное обучение. Семинар 6. Shap values
👁 3 раз 4290 сек.
Лекции по машинному обучению: https://www.youtube.com/playlist?list=PL4_hYwCyhAvZyW6qS58x4uElZgAkMVUvj
Семинары по машинному обучению: https://www.youtube.com/playlist?list=PL4_hYwCyhAvYPOWn6e44RKxEfRWEsPA1z

Монтаж: Роман Климовицкий
​Google at ICLR 2020">
Google at ICLR 2020

🔗 Google at ICLR 2020
Posted by Christian Howard, Google Research This week marks the beginning of the 8th International Conference on Learning Representations ...
​Альтернативное понимание контекста с помощью статистической языковой модели

🔗 Альтернативное понимание контекста с помощью статистической языковой модели
Написал библиотеку для работы со статистическими языковыми моделями – ALM. Надеюсь получить комментарии, критику, предложения. В интернете полно статей на тему...
🎥 Machine Learning With Python Video 17 : Support Vector Regression (SVR)
👁 1 раз 811 сек.
In this video we will discuss about support vector regression that is a part of support vector machine , as we know support vector machines can be used for both regression and classification data type .SVMs solve binary classification problems by formulating them as convex optimization problems. The optimization problem entails finding the maximum margin separating the hyperplane, while correctly classifying as many training points as possible. SVMs represent this optimal hyperplane with support vectors.