Нейронный сети
- Нейронные сети за 30 минут: от теории до практики.
- Chatbot на базе рекуррентной нейронной сети своими руками с нуля
- Обучение нейронных сетей методом обратного распространения ошибки.
- Sentiment analysis русскоязычных твитов при помощи TensorFlow.
- Распределенное обучение нейронных сетей с MXNet.
#neuralnetwork
#video
🎥 Нейронные сети за 30 минут: от теории до практики.
👁 249 раз ⏳ 1764 сек.
🎥 Chatbot на базе рекуррентной нейронной сети своими руками с нуля
👁 84 раз ⏳ 2691 сек.
🎥 Обучение нейронных сетей методом обратного распространения ошибки.
👁 52 раз ⏳ 2180 сек.
🎥 Sentiment analysis русскоязычных твитов при помощи TensorFlow.
👁 37 раз ⏳ 2307 сек.
🎥 Распределенное обучение нейронных сетей с MXNet.
👁 27 раз ⏳ 2611 сек.
- Нейронные сети за 30 минут: от теории до практики.
- Chatbot на базе рекуррентной нейронной сети своими руками с нуля
- Обучение нейронных сетей методом обратного распространения ошибки.
- Sentiment analysis русскоязычных твитов при помощи TensorFlow.
- Распределенное обучение нейронных сетей с MXNet.
#neuralnetwork
#video
🎥 Нейронные сети за 30 минут: от теории до практики.
👁 249 раз ⏳ 1764 сек.
Я расскажу вам что такое нейронные сети, и как они используются. За 30 минут вы узнаете минимально необходимую теорию а так же сможете написать свою первую многослойную нейронную сеть самостоятельно (она займет не более 50 строк кода!).
Поддержать проект можно вот тут: https://www.patreon.com/b0noi
Код: https://s3-us-west-1.amazonaws.com/youtube-channel/intro.ipynb
Что такое матрица: https://goo.gl/3kZfWp
Действия над матрицами (в том числе умножения): http://mathprofi.ru/deistviya_s_matricami.html🎥 Chatbot на базе рекуррентной нейронной сети своими руками с нуля
👁 84 раз ⏳ 2691 сек.
Этим видео я хочу показать насколько просто сегодня использовать нейронные сети. Вокруг меня довольно много людей одержимы идеей того, что нейронки...🎥 Обучение нейронных сетей методом обратного распространения ошибки.
👁 52 раз ⏳ 2180 сек.
Поговорим о там как можно обучить сеть методом обратного распространения ошибки. В данном видео затронуты (но не раскрыты) такие темы как:
- производная https://youtu.be/qoHWa0eJHq4
- число е https://youtu.be/2Z2j4KqZ3QY
Поддержать проект можно вот тут: https://www.patreon.com/b0noi
Notebook: https://s3-us-west-1.amazonaws.com/youtube-channel/nn_training_2_layer_network.ipynb🎥 Sentiment analysis русскоязычных твитов при помощи TensorFlow.
👁 37 раз ⏳ 2307 сек.
В данном видео я покажу вам как при помощи TensorFlow можно быстро и легкой создать нейронную сеть которая будет уметь анализировать эмоциональный окрас(Sentiment analysis) русскоязычных твитов.
IPython notebook можно найти вот тут: https://github.com/b0noI/ml-lessons/blob/master/sentiments_rus/sentiments.ipynb
Поддержать проект можно вот тут: https://www.patreon.com/b0noi
А еще у нас есть Java курсы, найти которые можно вот тут: https://map.hexlet.io/stacks/java🎥 Распределенное обучение нейронных сетей с MXNet.
👁 27 раз ⏳ 2611 сек.
Ссылки:
* Статья на Хабре - https://habrahabr.ru/post/334968/
* Страничка на Patreon - https://www.patreon.com/b0noi
Наши группы для общения:
* Google+ - https://plus.google.com/communities/103002092207368562864
* Slack - http://slack-ru.hexlet.io/ - группа #java
* VK - http://vk.com/java8
* FB - https://www.facebook.com/groups/1000400156742696
* Twitter - https://twitter.com/JavaHexlet
* YouTube - http://youtube.com/JavaCoursesWithKovalevskyi
* Web site - http://java.kovalevskyi.com/Vk
Нейронные сети за 30 минут: от теории до практики.
Я расскажу вам что такое нейронные сети, и как они используются. За 30 минут вы узнаете минимально необходимую теорию а так же сможете написать свою первую многослойную нейронную сеть самостоятельно (она займет не более 50 строк кода!). Поддержать проект…
Deep Learning - Ian Goodfello, Yoshua Bengio & Aaron Courville
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Deep Learning - Ian Goodfello, Yoshua Bengio & Aaron Courville.pdf - 💾22 717 311
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Deep Learning - Ian Goodfello, Yoshua Bengio & Aaron Courville.pdf - 💾22 717 311
AraNet: New Deep Learning Toolkit for Arabic Social Media
🔗 AraNet: New Deep Learning Toolkit for Arabic Social Media
Researchers have proposed AraNet, a deep learning toolkit designed for Arabic social media processing.
🔗 AraNet: New Deep Learning Toolkit for Arabic Social Media
Researchers have proposed AraNet, a deep learning toolkit designed for Arabic social media processing.
Medium
AraNet: New Deep Learning Toolkit for Arabic Social Media
Researchers have proposed AraNet, a deep learning toolkit designed for Arabic social media processing.
Deep Learning vs. Machine Learning
🔗 Deep Learning vs. Machine Learning
What do these buzz words really mean? And what is the difference between Machine and Deep Learning?
🔗 Deep Learning vs. Machine Learning
What do these buzz words really mean? And what is the difference between Machine and Deep Learning?
Medium
Deep Learning vs. Machine Learning
What do these buzz words really mean? And what is the difference between Machine and Deep Learning?
Logistic Regression Explained
🔗 Logistic Regression Explained
[ — Logistic Regression explained simply — ]
🔗 Logistic Regression Explained
[ — Logistic Regression explained simply — ]
Medium
Logistic Regression Explained
[ — Logistic Regression explained simply — ]
Forecasting at Uber: An Introduction
https://eng.uber.com/forecasting-introduction/
🔗 Forecasting at Uber: An Introduction
In this article, we provide a general overview of how our teams leverage forecasting to build better products and maintain the health of the Uber marketplace.
https://eng.uber.com/forecasting-introduction/
🔗 Forecasting at Uber: An Introduction
In this article, we provide a general overview of how our teams leverage forecasting to build better products and maintain the health of the Uber marketplace.
Книга Learning Pandas
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Learning pandas - Michael Heydt.pdf - 💾8 974 015
📝 Learning Pandas.pdf - 💾1 841 833
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Learning pandas - Michael Heydt.pdf - 💾8 974 015
📝 Learning Pandas.pdf - 💾1 841 833
Mutual Information-based State-Control for Intrinsically Motivated Reinforcement Learning
Agent Learning Framework: https://github.com/HorizonRobotics/alf
Github: https://github.com/ruizhaogit/misc
Paper: https://arxiv.org/abs/2002.01963v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 HorizonRobotics/alf
Agent Learning Framework. Contribute to HorizonRobotics/alf development by creating an account on GitHub.
Agent Learning Framework: https://github.com/HorizonRobotics/alf
Github: https://github.com/ruizhaogit/misc
Paper: https://arxiv.org/abs/2002.01963v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 HorizonRobotics/alf
Agent Learning Framework. Contribute to HorizonRobotics/alf development by creating an account on GitHub.
GitHub
GitHub - HorizonRobotics/alf: Agent Learning Framework https://alf.readthedocs.io
Agent Learning Framework https://alf.readthedocs.io - HorizonRobotics/alf
"The International Mathematical Olympiad Grand Challenge"
The challenge: build an AI that can win a gold medal in the competition — https://imo-grand-challenge.github.io
#ArtificialIntelligence #DeepLearning #Mathematics
🔗 IMO Grand Challenge
IMO Grand Challenge for Artificial Intelligence
The challenge: build an AI that can win a gold medal in the competition — https://imo-grand-challenge.github.io
#ArtificialIntelligence #DeepLearning #Mathematics
🔗 IMO Grand Challenge
IMO Grand Challenge for Artificial Intelligence
Toward an MRI-Based Mesoscale Connectome of the Squid Brain
https://www.sciencedirect.com/science/article/pii/S2589004219305620
🔗 Toward an MRI-Based Mesoscale Connectome of the Squid Brain
Using high-resolution diffusion magnetic resonance imaging (dMRI) and a suite of old and new staining techniques, the beginnings of a multi-scale conn…
https://www.sciencedirect.com/science/article/pii/S2589004219305620
🔗 Toward an MRI-Based Mesoscale Connectome of the Squid Brain
Using high-resolution diffusion magnetic resonance imaging (dMRI) and a suite of old and new staining techniques, the beginnings of a multi-scale conn…
Sciencedirect
Toward an MRI-Based Mesoscale Connectome of the Squid Brain
Using high-resolution diffusion magnetic resonance imaging (dMRI) and a suite of old and new staining techniques, the beginnings of a multi-scale conn…
Bridging Ordinary-Label Learning and Complementary-Label Learning
https://github.com/YasuhiroKatsura/ord-comp
https://arxiv.org/abs/2002.02158v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 YasuhiroKatsura/ord-comp
Contribute to YasuhiroKatsura/ord-comp development by creating an account on GitHub.
https://github.com/YasuhiroKatsura/ord-comp
https://arxiv.org/abs/2002.02158v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 YasuhiroKatsura/ord-comp
Contribute to YasuhiroKatsura/ord-comp development by creating an account on GitHub.
GitHub
YasuhiroKatsura/ord-comp
Contribute to YasuhiroKatsura/ord-comp development by creating an account on GitHub.
Enriching shapelets with positional information for timeseries classification
🔗 Enriching shapelets with positional information for timeseries classification
How a neat simple trick can boost both predictive performance and interpretability.
🔗 Enriching shapelets with positional information for timeseries classification
How a neat simple trick can boost both predictive performance and interpretability.
Medium
Enriching shapelets with positional information for timeseries classification
How a neat simple trick can boost both predictive performance and interpretability.
Particle Tracking at CERN with Machine Learning
🔗 Particle Tracking at CERN with Machine Learning
Could machine learning be used in high energy physics for discovering and characterizing new particles?
🔗 Particle Tracking at CERN with Machine Learning
Could machine learning be used in high energy physics for discovering and characterizing new particles?
Medium
Particle Tracking at CERN with Machine Learning
Could machine learning be used in high energy physics for discovering and characterizing new particles?
Лекция и семинар по Kaggle
🎥 Лекция и семинар по Kaggle (21.12.2019)
👁 1 раз ⏳ 9815 сек.
🎥 Лекция и семинар по Kaggle (21.12.2019)
👁 1 раз ⏳ 9815 сек.
Занятие ведёт Владислав Шахрай (Kaggle Master, Top-150).Vk
Лекция и семинар по Kaggle (21.12.2019)
Занятие ведёт Владислав Шахрай (Kaggle Master, Top-150).
🎥 Speech Recognition in Python | Speech To Text using Python
👁 1 раз ⏳ 443 сек.
👁 1 раз ⏳ 443 сек.
In this video we will see How to perform Speech Recognition in Python using Google Speech API. SpeechRecognition pip package is the Library for performing speech recognition, with support for several engines and APIs, online and offline.
Python Speech Recognition module:
sudo pip install SpeechRecognition
code : https://gist.github.com/famot/c74ce5146d5eb0023f47ccb73dfdd59a
#python #SpeechToText #PythonSpeechrecognition
★★★Top Online Courses From ProgrammingKnowledge ★★★
Python Programming Course ➡️ hVk
Speech Recognition in Python | Speech To Text using Python
In this video we will see How to perform Speech Recognition in Python using Google Speech API. SpeechRecognition pip package is the Library for performing speech recognition, with support for several engines and APIs, online and offline.
Python Speech Recognition…
Python Speech Recognition…
How to Improve the U.S Education System Using Data Science
🔗 How to Improve the U.S Education System Using Data Science
Why we should be replacing algebra with data science in high school education
🔗 How to Improve the U.S Education System Using Data Science
Why we should be replacing algebra with data science in high school education
Medium
The Importance of Data Science in High School Education
Why we should be replacing algebra with data science in high school education
Tokenizers: How machines read
🔗 Tokenizers: How machines read
We will cover often-overlooked concepts vital to NLP, such as Byte Pair Encoding, and discuss how understanding them leads to better models.
🔗 Tokenizers: How machines read
We will cover often-overlooked concepts vital to NLP, such as Byte Pair Encoding, and discuss how understanding them leads to better models.