Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🎥 [ИТ-лекторий]: Яндекс.Маршрутизация: как IT-технологии улучшают логистические сервисы
👁 1 раз 3586 сек.
Спикер: Даниил Тарарухин, руководитель группы аналитики в отделе B2BGeo геосервисов Яндекса

Описание:

Современные IT-технологии – Big Data, Machine Learning, облачные вычисления и прочие модные слова – постепенно выходят из мира Интернета и онлайн-сервисов в оффлайновый мир, стремясь освоить "классические" области экономики и сталкиваясь при этом со специфическими, порой весьма неожиданными проблемами.

Команда B2BGeo, входящая в геосервисы Яндекса (наверняка известные вам по "Яндекс.Картам" и "Навигатор
BlenderProc
BlenderProc is a modular procedural pipeline, which helps in generating real looking images for the training of convolutional neural networks.

https://github.com/DLR-RM/BlenderProc

https://github.com/DLR-RM/BlenderProc4BOP

https://arxiv.org/abs/1911.01911v1

Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 DLR-RM/BlenderProc
A procedural blender pipeline to generate images for deep learning - DLR-RM/BlenderProc
🎥 ml5.js: Train a Neural Network with Pixels as Input
👁 2 раз 1118 сек.
This tutorial builds on ml5.neuralNetwork() videos examining raw pixels as inputs to a neural network. This sets the stage for a discussion on convolutional neural networks.

💻Code: https://thecodingtrain.com/Courses/ml5-beginners-guide/8.1-pixels-input.html
🎥Next video: coming soon!
🎥Beginners Guide to Machine Learning: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6YPSwT06y_AEYTqIwbeam3y

🔗Starting code: https://editor.p5js.org/codingtrain/sketches/ARYvi6amN
🔗Regression: https://editor.p5js.org/codingt
Open Source Differentiable Computer Vision Library for PyTorch

https://kornia.org

Code: https://github.com/kornia/kornia

Paper: https://arxiv.org/abs/1910.02190v2
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 kornia/kornia
Open Source Differentiable Computer Vision Library for PyTorch - kornia/kornia
​Fast Video Object Segmentation using the Global Context Module.

http://arxiv.org/abs/2001.11243

🔗 Fast Video Object Segmentation using the Global Context Module
We developed a real-time, high-quality video object segmentation algorithm for semi-supervised video segmentation. Its performance is on par with the most accurate, time-consuming online-learning model, while its speed is similar to the fastest template-matching method which has sub-optimal accuracy. The core in achieving this is a novel global context module that reliably summarizes and propagates information through the entire video. Compared to previous approaches that only use the first, the last, or a select few frames to guide the segmentation of the current frame, the global context module allows us to use all past frames to guide the processing. Unlike the state-of-the-art space-time memory network that caches a memory at each spatiotemporal position, our global context module is a fixed-size representation that does not use more memory as more frames are processed. It is straightforward in implementation and has lower memory and computational costs than the space-time memory module. Equipped with the
🎥 StyleGAN, Latent Space Interpolation - Week 2
👁 1 раз 417 сек.
Learn more about machine learning for image makers by signing up at https://mailchi.mp/da905fbd76ee/machine-learning-artists

https://bustbright.square.site/
https://www.instagram.com/dvsmethid/
https://twitter.com/dvsch
https://dvschultz.github.io/design/