🎥 Object Detection with Deep Learning - Andreu Girbau - UPC TelecomBCN Barcelona 2019
👁 1 раз ⏳ 1254 сек.
👁 1 раз ⏳ 1254 сек.
https://telecombcn-dl.github.io/2019-dlcv/
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks and Q-nets for reinforcement learning have shaped a brandVk
Object Detection with Deep Learning - Andreu Girbau - UPC TelecomBCN Barcelona 2019
https://telecombcn-dl.github.io/2019-dlcv/
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed…
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed…
🎥 Face Recognition with Deep Learning - Ramon Morros - UPC TelecomBCN Barcelona 2019
👁 1 раз ⏳ 1921 сек.
👁 1 раз ⏳ 1921 сек.
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks and Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This couVk
Face Recognition with Deep Learning - Ramon Morros - UPC TelecomBCN Barcelona 2019
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data…
Книга Deep Learning by Ian Goodfellow
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Deep Learning - Ian Goodfello, Yoshua Bengio & Aaron Courville.pdf - 💾22 717 311
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Deep Learning - Ian Goodfello, Yoshua Bengio & Aaron Courville.pdf - 💾22 717 311
📚Новая книга Нассима Талеба
Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
https://arxiv.org/abs/2001.10488
🔗 Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
The book investigates the misapplication of conventional statistical techniques to fat tailed distributions and looks for remedies, when possible. Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress". Traditional asymptotics deal mainly with either n=1 or $n=\infty$, and the real world is in between, under of the "laws of the medium numbers" --which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: + The sample mean is rarely in line with the population mean, with effect on "naive empiricism", but can be sometimes be estimated via parametric methods. + The "empirical distribution" is rarely empirical. + Parameter uncertainty has compounding effects on statistical metrics. + Dimension reduction (principal components)
📝 Statistical Consequences of Fat Tails- Real World Preasymptotics, Epistemology, and Applications.pdf - 💾28 601 829
Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
https://arxiv.org/abs/2001.10488
🔗 Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
The book investigates the misapplication of conventional statistical techniques to fat tailed distributions and looks for remedies, when possible. Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress". Traditional asymptotics deal mainly with either n=1 or $n=\infty$, and the real world is in between, under of the "laws of the medium numbers" --which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: + The sample mean is rarely in line with the population mean, with effect on "naive empiricism", but can be sometimes be estimated via parametric methods. + The "empirical distribution" is rarely empirical. + Parameter uncertainty has compounding effects on statistical metrics. + Dimension reduction (principal components)
📝 Statistical Consequences of Fat Tails- Real World Preasymptotics, Epistemology, and Applications.pdf - 💾28 601 829
HiPlot: High-dimensional interactive plots made easy
https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy/
Get it on GitHub:
https://github.com/facebookresearch/hiplot
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 HiPlot: High-dimensional interactive plots made easy
We are releasing HiPlot, a lightweight interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data.
https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy/
Get it on GitHub:
https://github.com/facebookresearch/hiplot
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 HiPlot: High-dimensional interactive plots made easy
We are releasing HiPlot, a lightweight interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data.
Facebook
HiPlot: High-dimensional interactive plots made easy
We are releasing HiPlot, a lightweight interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data.
🎥 [ИТ-лекторий]: Яндекс.Маршрутизация: как IT-технологии улучшают логистические сервисы
👁 1 раз ⏳ 3586 сек.
👁 1 раз ⏳ 3586 сек.
Спикер: Даниил Тарарухин, руководитель группы аналитики в отделе B2BGeo геосервисов Яндекса
Описание:
Современные IT-технологии – Big Data, Machine Learning, облачные вычисления и прочие модные слова – постепенно выходят из мира Интернета и онлайн-сервисов в оффлайновый мир, стремясь освоить "классические" области экономики и сталкиваясь при этом со специфическими, порой весьма неожиданными проблемами.
Команда B2BGeo, входящая в геосервисы Яндекса (наверняка известные вам по "Яндекс.Картам" и "НавигаторVk
[ИТ-лекторий]: Яндекс.Маршрутизация: как IT-технологии улучшают логистические сервисы
Спикер: Даниил Тарарухин, руководитель группы аналитики в отделе B2BGeo геосервисов Яндекса
Описание:
Современные IT-технологии – Big Data, Machine Learning, облачные вычисления и прочие модные слова – постепенно выходят из мира Интернета и онлайн-сервисов…
Описание:
Современные IT-технологии – Big Data, Machine Learning, облачные вычисления и прочие модные слова – постепенно выходят из мира Интернета и онлайн-сервисов…
StyleGAN2: Near-Perfect Human Face Synthesis...and More
🔗 StyleGAN2: Near-Perfect Human Face Synthesis...and More
❤️ Check out Weights & Biases here and sign up for a free demo: https://www.wandb.com/papers Their blog post on street scene segmentation is available here: https://app.wandb.ai/borisd13/semantic-segmentation/reports/Semantic-Segmentation-on-Street-Scenes--VmlldzoxMDk2OA 📝 The paper "Analyzing and Improving the Image Quality of #StyleGAN" and its source code is available here: - http://arxiv.org/abs/1912.04958 - https://github.com/NVlabs/stylegan2 - https://colab.research.google.com/drive/1ShgW6wohEFQtqs_
🔗 StyleGAN2: Near-Perfect Human Face Synthesis...and More
❤️ Check out Weights & Biases here and sign up for a free demo: https://www.wandb.com/papers Their blog post on street scene segmentation is available here: https://app.wandb.ai/borisd13/semantic-segmentation/reports/Semantic-Segmentation-on-Street-Scenes--VmlldzoxMDk2OA 📝 The paper "Analyzing and Improving the Image Quality of #StyleGAN" and its source code is available here: - http://arxiv.org/abs/1912.04958 - https://github.com/NVlabs/stylegan2 - https://colab.research.google.com/drive/1ShgW6wohEFQtqs_
YouTube
StyleGAN2: Near-Perfect Human Face Synthesis...and More
❤️ Check out Weights & Biases here and sign up for a free demo: https://www.wandb.com/papers
Their blog post on street scene segmentation is available here:
https://app.wandb.ai/borisd13/semantic-segmentation/reports/Semantic-Segmentation-on-Street-Scenes…
Their blog post on street scene segmentation is available here:
https://app.wandb.ai/borisd13/semantic-segmentation/reports/Semantic-Segmentation-on-Street-Scenes…
Автор рассказывает, как научил искусственный интеллект играть в Space Invaders.
https://hackernoon.com/how-i-trained-an-ai-to-play-atari-space-invaders-b3e8756ef026
🔗 How I Trained an AI to Play Atari Space Invaders
https://hackernoon.com/how-i-trained-an-ai-to-play-atari-space-invaders-b3e8756ef026
🔗 How I Trained an AI to Play Atari Space Invaders
Hackernoon
How I Trained an AI to Play Atari Space Invaders | HackerNoon
Everyone is talking about the race between Artificial Intelligence and Human Intelligence. When will AI fully surpass human ability and be in control of a majority of our daily lives? While humans spend their days going to school and educating themselves…
Modeling the Risk of Traffic Accidents in New York City
🔗 Modeling the Risk of Traffic Accidents in New York City
Classifying risk of traffic accidents using a convLSTM2D deep learning model
🔗 Modeling the Risk of Traffic Accidents in New York City
Classifying risk of traffic accidents using a convLSTM2D deep learning model
Medium
Modeling the Risk of Traffic Accidents in New York City
Classifying risk of traffic accidents using a convLSTM2D deep learning model
BlenderProc
BlenderProc is a modular procedural pipeline, which helps in generating real looking images for the training of convolutional neural networks.
https://github.com/DLR-RM/BlenderProc
https://github.com/DLR-RM/BlenderProc4BOP
https://arxiv.org/abs/1911.01911v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 DLR-RM/BlenderProc
A procedural blender pipeline to generate images for deep learning - DLR-RM/BlenderProc
BlenderProc is a modular procedural pipeline, which helps in generating real looking images for the training of convolutional neural networks.
https://github.com/DLR-RM/BlenderProc
https://github.com/DLR-RM/BlenderProc4BOP
https://arxiv.org/abs/1911.01911v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 DLR-RM/BlenderProc
A procedural blender pipeline to generate images for deep learning - DLR-RM/BlenderProc
Robots are Ready for the Real World
🔗 Robots are Ready for the Real World
The new startup, Covariant, from UC Berkeley Artificial Intelligence Research shows the robots can do it in the big game (real world).
🔗 Robots are Ready for the Real World
The new startup, Covariant, from UC Berkeley Artificial Intelligence Research shows the robots can do it in the big game (real world).
Medium
Robots are Ready for the Real World
The new startup, Covariant, from UC Berkeley Artificial Intelligence Research shows the robots can do it in the big game (real world).
🎥 ml5.js: Train a Neural Network with Pixels as Input
👁 2 раз ⏳ 1118 сек.
👁 2 раз ⏳ 1118 сек.
This tutorial builds on ml5.neuralNetwork() videos examining raw pixels as inputs to a neural network. This sets the stage for a discussion on convolutional neural networks.
💻Code: https://thecodingtrain.com/Courses/ml5-beginners-guide/8.1-pixels-input.html
🎥Next video: coming soon!
🎥Beginners Guide to Machine Learning: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6YPSwT06y_AEYTqIwbeam3y
🔗Starting code: https://editor.p5js.org/codingtrain/sketches/ARYvi6amN
🔗Regression: https://editor.p5js.org/codingtVk
ml5.js: Train a Neural Network with Pixels as Input
This tutorial builds on ml5.neuralNetwork() videos examining raw pixels as inputs to a neural network. This sets the stage for a discussion on convolutional neural networks.
💻Code: https://thecodingtrain.com/Courses/ml5-beginners-guide/8.1-pixels-input.html…
💻Code: https://thecodingtrain.com/Courses/ml5-beginners-guide/8.1-pixels-input.html…
Open Source Differentiable Computer Vision Library for PyTorch
https://kornia.org
Code: https://github.com/kornia/kornia
Paper: https://arxiv.org/abs/1910.02190v2
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kornia/kornia
Open Source Differentiable Computer Vision Library for PyTorch - kornia/kornia
https://kornia.org
Code: https://github.com/kornia/kornia
Paper: https://arxiv.org/abs/1910.02190v2
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kornia/kornia
Open Source Differentiable Computer Vision Library for PyTorch - kornia/kornia
Real-Time Sentiment Analytics and Visualization via ElectionTweetBoard
🔗 Real-Time Sentiment Analytics and Visualization via ElectionTweetBoard
This post will explore various forms of and considerations in data analytics, visualization, as well as Machine Learning by delving deeper…
🔗 Real-Time Sentiment Analytics and Visualization via ElectionTweetBoard
This post will explore various forms of and considerations in data analytics, visualization, as well as Machine Learning by delving deeper…
Medium
Real-Time Sentiment Analytics and Visualization via ElectionTweetBoard
This post will explore various forms of and considerations in data analytics, visualization, as well as Machine Learning by delving deeper…
Топ-6 инструментов для анализа данных / data science.
https://youtu.be/23QtdnfhBRY
🔗 Top 6 Tool Types For Data Analysis / Data Science - Save hours by using the right tool
Quick Summary of YouTube Live stream Which Tools For Data Analytics / Data Science https://youtu.be/GD-JnuNS9gs R vs Python https://youtu.be/ETvvwTuiIps Data Wrangling with Excel https://www.youtube.com/playlist?list=PL8ncIDIP_e6uzAHkxmIqkHDAXkzoPWrDX
https://youtu.be/23QtdnfhBRY
🔗 Top 6 Tool Types For Data Analysis / Data Science - Save hours by using the right tool
Quick Summary of YouTube Live stream Which Tools For Data Analytics / Data Science https://youtu.be/GD-JnuNS9gs R vs Python https://youtu.be/ETvvwTuiIps Data Wrangling with Excel https://www.youtube.com/playlist?list=PL8ncIDIP_e6uzAHkxmIqkHDAXkzoPWrDX
YouTube
Top 6 Tool Types For Data Analysis / Data Science - Save hours by using the right tool
Quick Summary of YouTube Live stream Which Tools For Data Analytics / Data Science
https://youtu.be/GD-JnuNS9gs
R vs Python
https://youtu.be/ETvvwTuiIps
Data Wrangling with Excel
https://www.youtube.com/playlist?list=PL8ncIDIP_e6uzAHkxmIqkHDAXkzoPWrDX
https://youtu.be/GD-JnuNS9gs
R vs Python
https://youtu.be/ETvvwTuiIps
Data Wrangling with Excel
https://www.youtube.com/playlist?list=PL8ncIDIP_e6uzAHkxmIqkHDAXkzoPWrDX