Natural Image Matting via Guided Contextual Attention
Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area... (read more)
https://github.com/Yaoyi-Li/GCA-Matting
Paper: https://arxiv.org/abs/2001.04069v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Yaoyi-Li/GCA-Matting
Natural Image Matting via Guided Contextual Attention - Yaoyi-Li/GCA-Matting
Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area... (read more)
https://github.com/Yaoyi-Li/GCA-Matting
Paper: https://arxiv.org/abs/2001.04069v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Yaoyi-Li/GCA-Matting
Natural Image Matting via Guided Contextual Attention - Yaoyi-Li/GCA-Matting
Using neural networks to solve advanced mathematics equations
https://ai.facebook.com/blog/using-neural-networks-to-solve-advanced-mathematics-equations/
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Using neural networks to solve advanced mathematics equations
Facebook AI has developed the first neural network that uses symbolic reasoning to solve advanced mathematics problems.
https://ai.facebook.com/blog/using-neural-networks-to-solve-advanced-mathematics-equations/
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Using neural networks to solve advanced mathematics equations
Facebook AI has developed the first neural network that uses symbolic reasoning to solve advanced mathematics problems.
Meta
Using neural networks to solve advanced mathematics equations
Facebook AI has developed the first neural network that uses symbolic reasoning to solve advanced mathematics problems.
Run a TensorFlow SavedModel in Node.js directly without conversion
https://blog.tensorflow.org/2020/01/run-tensorflow-savedmodel-in-nodejs-directly-without-conversion.html
🔗 Run a TensorFlow SavedModel in Node.js directly without conversion
https://blog.tensorflow.org/2020/01/run-tensorflow-savedmodel-in-nodejs-directly-without-conversion.html
🔗 Run a TensorFlow SavedModel in Node.js directly without conversion
blog.tensorflow.org
Run a TensorFlow SavedModel in Node.js directly without conversion
The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.
Rethinking Generalization of Neural Models: A Named Entity Recognition Case Study
Paper: https://arxiv.org/abs/2001.03844v1
Code https://github.com/pfliu-nlp/Named-Entity-Recognition-NER-Papers
🔗 pfliu-nlp/Named-Entity-Recognition-NER-Papers
An elaborate and exhaustive paper list for Named Entity Recognition (NER) - pfliu-nlp/Named-Entity-Recognition-NER-Papers
Paper: https://arxiv.org/abs/2001.03844v1
Code https://github.com/pfliu-nlp/Named-Entity-Recognition-NER-Papers
🔗 pfliu-nlp/Named-Entity-Recognition-NER-Papers
An elaborate and exhaustive paper list for Named Entity Recognition (NER) - pfliu-nlp/Named-Entity-Recognition-NER-Papers
GitHub
GitHub - pfliu-nlp/Named-Entity-Recognition-NER-Papers: An elaborate and exhaustive paper list for Named Entity Recognition (NER)
An elaborate and exhaustive paper list for Named Entity Recognition (NER) - pfliu-nlp/Named-Entity-Recognition-NER-Papers
Anomaly Detection with Autoencoders in TensorFlow 2.0
A Guide on how to implement Neural Networks in TensorFlow 2.0 to detect anomalies.
🔗 Anomaly Detection with Autoencoders in TensorFlow 2.0
A Guide on how to implement Neural Networks in TensorFlow 2.0 to detect anomalies.
A Guide on how to implement Neural Networks in TensorFlow 2.0 to detect anomalies.
🔗 Anomaly Detection with Autoencoders in TensorFlow 2.0
A Guide on how to implement Neural Networks in TensorFlow 2.0 to detect anomalies.
Medium
Anomaly Detection with Autoencoders in TensorFlow 2.0
A Guide on how to implement Neural Networks in TensorFlow 2.0 to detect anomalies.
On the Relationship between Self-Attention and Convolutional Layers
https://github.com/epfml/attention-cnn
Paper: https://arxiv.org/abs/1911.03584v2
🔗 epfml/attention-cnn
Source code for "On the Relationship between Self-Attention and Convolutional Layers" - epfml/attention-cnn
https://github.com/epfml/attention-cnn
Paper: https://arxiv.org/abs/1911.03584v2
🔗 epfml/attention-cnn
Source code for "On the Relationship between Self-Attention and Convolutional Layers" - epfml/attention-cnn
GitHub
GitHub - epfml/attention-cnn: Source code for "On the Relationship between Self-Attention and Convolutional Layers"
Source code for "On the Relationship between Self-Attention and Convolutional Layers" - epfml/attention-cnn
Mapping the tech world with t-SNE
🔗 Mapping the tech world with t-SNE
We analyse 200k tech news articles with the t-SNE algorithm
🔗 Mapping the tech world with t-SNE
We analyse 200k tech news articles with the t-SNE algorithm
Medium
Mapping the tech world with t-SNE
We analyse 200k tech news articles with the t-SNE algorithm
An extensible Evolutionary Algorithm Example in Python
🔗 An extensible Evolutionary Algorithm Example in Python
Learning how to write an easy Evolutionary Algorithm from scratch in less than 50 lines of code that you can use for your projects.
🔗 An extensible Evolutionary Algorithm Example in Python
Learning how to write an easy Evolutionary Algorithm from scratch in less than 50 lines of code that you can use for your projects.
Medium
An extensible Evolutionary Algorithm Example in Python
Learning how to write an easy Evolutionary Algorithm from scratch in less than 50 lines of code that you can use for your projects.
🎥 DeepPhish: Simulating Malicious AI
👁 1 раз ⏳ 3054 сек.
👁 1 раз ⏳ 3054 сек.
91% of cybercrimes and attacks start with a phishing email. This means that cyber security researchers must focus on detecting phishing in all of its settings and uses. However, they face many challenges as they go up against sophisticated and intelligent attackers. As a result, they must use cutting-edge Machine Learning and Artificial Intelligence techniques to combat existing and emerging criminal tactics.
By Alejandro Correa Bahnsen
Full Abstract & Presentation Materials: https://www.blackhat.com/eu-1Vk
DeepPhish: Simulating Malicious AI
91% of cybercrimes and attacks start with a phishing email. This means that cyber security researchers must focus on detecting phishing in all of its settings and uses. However, they face many challenges as they go up against sophisticated and intelligent…
PyTorch 1.4 release
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
- PyTorch Mobile - Build level customization
- Distributed Model Parallel Training (RPC)
- Java bindings
- End of python 2 support =)
- Pruning out-of-the box
- Learning rate schedulers (torch.optim.lr_scheduler) now support “chaining.”
- Named Tensors (out of beta?)
- AMD Support (!?)
- Quantization (!) - more modules support
🔗 pytorch/pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/pytorch
https://github.com/pytorch/pytorch/releases/tag/v1.4.0
- PyTorch Mobile - Build level customization
- Distributed Model Parallel Training (RPC)
- Java bindings
- End of python 2 support =)
- Pruning out-of-the box
- Learning rate schedulers (torch.optim.lr_scheduler) now support “chaining.”
- Named Tensors (out of beta?)
- AMD Support (!?)
- Quantization (!) - more modules support
🔗 pytorch/pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/pytorch
GitHub
Release Mobile build customization, Distributed model parallel training, Java bindings, and more · pytorch/pytorch
PyTorch 1.4.0 Release Notes
Highlights
Backwards Incompatible Changes
Python
JIT
C++
New Features
torch.optim
Distributed
RPC [Experimental]
JIT
Mobile
Improvements
Distributed
JIT
Mobile
N...
Highlights
Backwards Incompatible Changes
Python
JIT
C++
New Features
torch.optim
Distributed
RPC [Experimental]
JIT
Mobile
Improvements
Distributed
JIT
Mobile
N...
Deep Image Compression using Decoder Side Information
Code: https://github.com/ayziksha/DSIN
Paper: https://arxiv.org/abs/2001.04753v1
🔗 ayziksha/DSIN
Deep Image Compression using Decoder Side Information - ayziksha/DSIN
Code: https://github.com/ayziksha/DSIN
Paper: https://arxiv.org/abs/2001.04753v1
🔗 ayziksha/DSIN
Deep Image Compression using Decoder Side Information - ayziksha/DSIN
Глубокое обучение / Deep Learning
1. Слои глубоких сверточных сетей
2. Alex (net)
3. VGG
4. GoogleNet
5. ResNet, InceptionResNet, DenseNet
6. SqueezeNet
#video #neural
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
🎥 Untitled
👁 1 раз ⏳ 1061 сек.
🎥 Untitled
👁 1 раз ⏳ 330 сек.
🎥 Untitled
👁 1 раз ⏳ 198 сек.
🎥 Untitled
👁 1 раз ⏳ 275 сек.
🎥 Untitled
👁 1 раз ⏳ 320 сек.
🎥 Untitled
👁 1 раз ⏳ 129 сек.
1. Слои глубоких сверточных сетей
2. Alex (net)
3. VGG
4. GoogleNet
5. ResNet, InceptionResNet, DenseNet
6. SqueezeNet
#video #neural
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
🎥 Untitled
👁 1 раз ⏳ 1061 сек.
🎥 Untitled
👁 1 раз ⏳ 330 сек.
🎥 Untitled
👁 1 раз ⏳ 198 сек.
🎥 Untitled
👁 1 раз ⏳ 275 сек.
🎥 Untitled
👁 1 раз ⏳ 320 сек.
🎥 Untitled
👁 1 раз ⏳ 129 сек.
#MoscowTravelHack #DataScience #ПредиктивнаяАналитика
Задачи для DataSience-команд и аналитиков в рамках хакатона Moscow Travel Hack. Создай предиктивную модель покупки билета на основе данных о пользователе в сервисе «Мегафон Путешествия» или придумай рекомендательный сервис, который сможет построить индивидуальную программу посещения Москвы для иностранного туриста на платформе Russpass.
Эти и другие 10 задач можно найти на сайте хакатона travelhack.moscow
Призовой фонд — 1,1 млн рублей!
🔗 Moscow Travel Hack
Создай новые технологии и digital-решения для туризма. Призовой фонд 1.1 миллион рублей. Прием заявок до 28 января.
Задачи для DataSience-команд и аналитиков в рамках хакатона Moscow Travel Hack. Создай предиктивную модель покупки билета на основе данных о пользователе в сервисе «Мегафон Путешествия» или придумай рекомендательный сервис, который сможет построить индивидуальную программу посещения Москвы для иностранного туриста на платформе Russpass.
Эти и другие 10 задач можно найти на сайте хакатона travelhack.moscow
Призовой фонд — 1,1 млн рублей!
🔗 Moscow Travel Hack
Создай новые технологии и digital-решения для туризма. Призовой фонд 1.1 миллион рублей. Прием заявок до 28 января.
business.russpass.ru
Moscow Travel Hack 2024
http://www.youtube.com/watch?v=00LoMxKY-_A#action=share
Для тех, кого заинтересовала тема машинного обучения :)
🎥 А? Машинное обучение
👁 1 раз ⏳ 533 сек.
Для тех, кого заинтересовала тема машинного обучения :)
🎥 А? Машинное обучение
👁 1 раз ⏳ 533 сек.
Большое спасибо https://vas3k.ru/blog/machine_learning/
Без его картинок и примеров я бы не справился.YouTube
А? Машинное обучение
Большое спасибо https://vas3k.ru/blog/machine_learning/ Без его картинок и примеров я бы не справился.
Bayesian Deep Learning Benchmarks
Oxford Applied and Theoretical Machine Learning Group : https://github.com/OATML/bdl-benchmarks
#Bayesian #Benchmark #DeepLearning
🔗 OATML/bdl-benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
Oxford Applied and Theoretical Machine Learning Group : https://github.com/OATML/bdl-benchmarks
#Bayesian #Benchmark #DeepLearning
🔗 OATML/bdl-benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
GitHub
GitHub - OATML/bdl-benchmarks: Bayesian Deep Learning Benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
"Everybody’s Talkin’: Let Me Talk as You Want"
Paper pdf: https://arxiv.org/pdf/2001.05201.pdf
Github: https://wywu.github.io/projects/EBT/EBT.html
Youtube: https://youtu.be/tNPuAnvijQk
This paper presents a method to edit a target portrait footage by taking a sequence of audio as input to synthesize a photo-realistic video.
🔗
Paper pdf: https://arxiv.org/pdf/2001.05201.pdf
Github: https://wywu.github.io/projects/EBT/EBT.html
Youtube: https://youtu.be/tNPuAnvijQk
This paper presents a method to edit a target portrait footage by taking a sequence of audio as input to synthesize a photo-realistic video.
🔗
YouTube
[TIFS 2022] Everybody’s Talkin’: Let Me Talk as You Want
The demo of technical report "Everybody’s Talkin’: Let Me Talk as You Want"
Project Page: https://wywu.github.io/projects/EBT/EBT.html
Project Page: https://wywu.github.io/projects/EBT/EBT.html
The hyperparameter tuning problem in Bayesian Networks
🔗 The hyperparameter tuning problem in Bayesian Networks
In this history, we discuss the structural criteria to take into account when building models based on BN (Bayesian Network). We will…
🔗 The hyperparameter tuning problem in Bayesian Networks
In this history, we discuss the structural criteria to take into account when building models based on BN (Bayesian Network). We will…
Medium
The hyperparameter tuning problem in Bayesian Networks
In this history, we discuss the structural criteria to take into account when building models based on BN (Bayesian Network). We will…