DiffTaichi: Differentiable Programming for Physical Simulation
https://github.com/yuanming-hu/difftaichi
https://arxiv.org/abs/1910.00935v2
🔗 yuanming-hu/difftaichi
10 differentiable physical simulators built with Taichi differentiable programming (DiffTaichi, ICLR 2020) - yuanming-hu/difftaichi
https://github.com/yuanming-hu/difftaichi
https://arxiv.org/abs/1910.00935v2
🔗 yuanming-hu/difftaichi
10 differentiable physical simulators built with Taichi differentiable programming (DiffTaichi, ICLR 2020) - yuanming-hu/difftaichi
Лекции по Big Data
1 - BigData. Введение в машинное обучение
2 - BigData. Python
3 - BigData. Что такое BigData
4 - BigData. OLAP. What and why
5 - BigData. IoT и BigData
6 - BigData. Сhallenges of classification
7 - BigData. Formal Context Analysis
8 - BigData. Регрессия
9 - BigData. Хранение и анализ больших данных
10 - BigData. Deep learning
#BigData
#video
🎥 01. 1 - BigData. Введение в машинное обучение
👁 3729 раз ⏳ 1959 сек.
🎥 2 - BigData. Python
👁 103 раз ⏳ 8499 сек.
🎥 3 - BigData. Что такое BigData
👁 38 раз ⏳ 3792 сек.
🎥 4 - BigData. OLAP. What and why
👁 29 раз ⏳ 5766 сек.
🎥 5 - BigData. IoT и BigData
👁 16 раз ⏳ 4183 сек.
🎥 6 - BigData. Сhallenges of classification
👁 20 раз ⏳ 3923 сек.
🎥 7 - BigData. Formal Context Analysis
👁 15 раз ⏳ 6046 сек.
🎥 8 - BigData. Регрессия
👁 21 раз ⏳ 4118 сек.
🎥 9 - BigData. Хранение и анализ больших данных
👁 22 раз ⏳ 8210 сек.
🎥 10 - BigData. Deep learning
👁 20 раз ⏳ 5703 сек.
1 - BigData. Введение в машинное обучение
2 - BigData. Python
3 - BigData. Что такое BigData
4 - BigData. OLAP. What and why
5 - BigData. IoT и BigData
6 - BigData. Сhallenges of classification
7 - BigData. Formal Context Analysis
8 - BigData. Регрессия
9 - BigData. Хранение и анализ больших данных
10 - BigData. Deep learning
#BigData
#video
🎥 01. 1 - BigData. Введение в машинное обучение
👁 3729 раз ⏳ 1959 сек.
🎥 2 - BigData. Python
👁 103 раз ⏳ 8499 сек.
Лекция 2 - Python, как язык анализа данных.
В лекции сделан небольшой обзор языков и программ для анализа данных. Рассказан базовый синтаксис языка...🎥 3 - BigData. Что такое BigData
👁 38 раз ⏳ 3792 сек.
Лекция 3 - Что такое BigData?
В лекции рассказывается о том, что же это такое. Цели, проблемы и практическая польза результатов
анализа BD на приме...🎥 4 - BigData. OLAP. What and why
👁 29 раз ⏳ 5766 сек.
Лекция 4 - OLAP. What and why. Lightning talk.
В лекции описание OLAP. Что это? Для чего? Каковы отличия от OLTP? Небольшой экскурс в анализ данных...🎥 5 - BigData. IoT и BigData
👁 16 раз ⏳ 4183 сек.
Лекция 5 - IoT and BigData
В лекции рассказывается о IoT and BigData. Области их пересечения, применения, основные проблемы и методы решения. Lambd...🎥 6 - BigData. Сhallenges of classification
👁 20 раз ⏳ 3923 сек.
Лекция 6 - Сhallenges of classification
The Internet is growing at a tremendous rate. The amount of information presented is beyond human comprehen...🎥 7 - BigData. Formal Context Analysis
👁 15 раз ⏳ 6046 сек.
Лекция 7 - Formal Concept Analysis
В этой лекции рассказывается о том, откуда возник анализ формальных понятий, для чего он используется и какие за...🎥 8 - BigData. Регрессия
👁 21 раз ⏳ 4118 сек.
Лекция 8 - Регрессия
В лекции рассказана задача регрессии на примере классической задачи предсказания цены дома в Силиконовой Долине. Также рассмот...🎥 9 - BigData. Хранение и анализ больших данных
👁 22 раз ⏳ 8210 сек.
Лекция 9 - Хранение и анализ больших данных
Лекция дает ответы на такие вопросы как: что такое большие данные, откуда они берутся, как их хранить, ...🎥 10 - BigData. Deep learning
👁 20 раз ⏳ 5703 сек.
Опубликовано: 19 февр. 2016 г.
Лекция 10 - Deep learning - нейронные сети и их применение.
Лекция рассказывает о истории возникновения и развития н...Vk
01. 1 - BigData. Введение в машинное обучение
vk video
Hey Siri, what does it mean to be human?
Before suggesting that AI can enhance human potential, it can be useful to ask what separates humanity from the progress of technology
🔗 Hey Siri, what does it mean to be human?
Before suggesting that AI can enhance human potential, it can be useful to ask what separates humanity from the progress of technology
Before suggesting that AI can enhance human potential, it can be useful to ask what separates humanity from the progress of technology
🔗 Hey Siri, what does it mean to be human?
Before suggesting that AI can enhance human potential, it can be useful to ask what separates humanity from the progress of technology
Medium
Hey Siri, what does it mean to be human?
Before suggesting that AI can enhance human potential, it can be useful to ask what separates humanity from the progress of technology
Using MALLET LDA to Learn Why Players Hate Pokémon Sword /Shield
https://towardsdatascience.com/using-mallet-lda-to-learn-why-players-hate-pok%C3%A9mon-sword-shield-23b12e4fc395?source=collection_home---4------1-----------------------
🔗 Using MALLET LDA to Learn Why Players Hate Pokémon Sword /Shield
A simple walk-through on how MALLET LDA can be used to topic model reasons why players didn’t like Pokémon Sword /Shield.
https://towardsdatascience.com/using-mallet-lda-to-learn-why-players-hate-pok%C3%A9mon-sword-shield-23b12e4fc395?source=collection_home---4------1-----------------------
🔗 Using MALLET LDA to Learn Why Players Hate Pokémon Sword /Shield
A simple walk-through on how MALLET LDA can be used to topic model reasons why players didn’t like Pokémon Sword /Shield.
Medium
Using MALLET LDA to Learn Why Players Hate Pokémon Sword /Shield
A simple walk-through on how MALLET LDA can be used to topic model reasons why players didn’t like Pokémon Sword /Shield.
Predicting Used Car Prices with Machine Learning Techniques
🔗 Predicting Used Car Prices with Machine Learning Techniques
Comparing Performance of Five Different ML Models
🔗 Predicting Used Car Prices with Machine Learning Techniques
Comparing Performance of Five Different ML Models
Medium
Predicting Used Car Prices with Machine Learning Techniques
Comparing Performance of Five Different ML Models
Google Cloud Machine Learning -TensorFlow:Methods for Serving TensorFlow Models on GCP|packtpub.com
https://www.youtube.com/watch?v=fXBIq1Dsgqk
🎥 Google Cloud Machine Learning -TensorFlow:Methods for Serving TensorFlow Models on GCP|packtpub.com
👁 1 раз ⏳ 912 сек.
https://www.youtube.com/watch?v=fXBIq1Dsgqk
🎥 Google Cloud Machine Learning -TensorFlow:Methods for Serving TensorFlow Models on GCP|packtpub.com
👁 1 раз ⏳ 912 сек.
This video tutorial has been taken from Google Cloud Machine Learning with TensorFlow. You can learn more and buy the full video course here https://bit.ly/2tLNY5U
Find us on Facebook -- http://www.facebook.com/Packtvideo
Follow us on Twitter - http://www.twitter.com/packtvideoYouTube
Google Cloud Machine Learning -TensorFlow:Methods for Serving TensorFlow Models on GCP|packtpub.com
This video tutorial has been taken from Google Cloud Machine Learning with TensorFlow. You can learn more and buy the full video course here https://bit.ly/2tLNY5U
Find us on Facebook -- http://www.facebook.com/Packtvideo
Follow us on Twitter - http://…
Find us on Facebook -- http://www.facebook.com/Packtvideo
Follow us on Twitter - http://…
Most Effective Way To Implement Radial Basis Function Neural Network for Classification Problem
🔗 Most Effective Way To Implement Radial Basis Function Neural Network for Classification Problem
How to use K-Means Clustering along with Linear regression to classify images
🔗 Most Effective Way To Implement Radial Basis Function Neural Network for Classification Problem
How to use K-Means Clustering along with Linear regression to classify images
Medium
Most Effective Way To Implement Radial Basis Function Neural Network for Classification Problem
How to use K-Means Clustering along with Linear regression to classify images
Big Data Analysis for Bioinformatics and Biomedical Discoveries
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Big Data Analysis for Biomedical Discoveries (en).pdf - 💾6 399 456
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Big Data Analysis for Biomedical Discoveries (en).pdf - 💾6 399 456
Resolving the Scope of Speculation and Negation using Transformer-Based Architectures
🔗 Resolving the Scope of Speculation and Negation using Transformer-Based Architectures
Speculation is a naturally occurring phenomena in textual data, forming an integral component of many systems, especially in the biomedical information retrieval domain. Previous work addressing cue detection and scope resolution (the two subtasks of speculation detection) have ranged from rule-based systems to deep learning-based approaches. In this paper, we apply three popular
🔗 Resolving the Scope of Speculation and Negation using Transformer-Based Architectures
Speculation is a naturally occurring phenomena in textual data, forming an integral component of many systems, especially in the biomedical information retrieval domain. Previous work addressing cue detection and scope resolution (the two subtasks of speculation detection) have ranged from rule-based systems to deep learning-based approaches. In this paper, we apply three popular
Яндекс Дзен
Resolving the Scope of Speculation and Negation using Transformer-Based Architectures
Speculation is a naturally occurring phenomena in textual data, forming an integral component of many systems, especially in the biomedical information retrieval domain. Previous work addressing cue detection and scope resolution (the two subtasks of speculation…
Fast Neural Network Adaptation via Parameter Remapping and Architecture Search
https://github.com/JaminFong/FNA
Paper: https://arxiv.org/abs/2001.02525v1
🔗 JaminFong/FNA
Fast Neural Network Adaptation via Parameter Remapping and Architecture Search - JaminFong/FNA
https://github.com/JaminFong/FNA
Paper: https://arxiv.org/abs/2001.02525v1
🔗 JaminFong/FNA
Fast Neural Network Adaptation via Parameter Remapping and Architecture Search - JaminFong/FNA
👨🦱 DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
Code: https://github.com/EndlessSora/DeeperForensics-1.0
Paper: https://arxiv.org/abs/2001.03024v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 EndlessSora/DeeperForensics-1.0
Code, model and data of DeeperForensics-1.0 will be made publicly available here. - EndlessSora/DeeperForensics-1.0
Code: https://github.com/EndlessSora/DeeperForensics-1.0
Paper: https://arxiv.org/abs/2001.03024v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 EndlessSora/DeeperForensics-1.0
Code, model and data of DeeperForensics-1.0 will be made publicly available here. - EndlessSora/DeeperForensics-1.0
Знакомство с машинным обучением на бесплатном интенсиве от Skillbox — отличный шанс начать карьеру в Data Science и стать востребованным специалистом.
Регистрируйся по ссылке: ▶https://clc.to/rxEv9g
Всего три дня занятий — с 13 по 15 января, и ты откроешь себе дверь в профессию будущего!
💡 Интенсив проведёт Михаил Овчинников, главный методист технического направления Skillbox. Вместе с ним ты создашь искусственный интеллект, освоишь Python и Machine Learning с нуля.
Регистрируйся по ссылке: ▶https://clc.to/rxEv9g
Всего три дня занятий — с 13 по 15 января, и ты откроешь себе дверь в профессию будущего!
💡 Интенсив проведёт Михаил Овчинников, главный методист технического направления Skillbox. Вместе с ним ты создашь искусственный интеллект, освоишь Python и Machine Learning с нуля.
webinar.skillbox.ru
Интенсив Напишите первую модель машинного обучения за 3 дня
Real or Not? NLP with Disaster Tweets — EDA
🔗 Real or Not? NLP with Disaster Tweets — EDA
Getting started with NLP
🔗 Real or Not? NLP with Disaster Tweets — EDA
Getting started with NLP
Medium
Real or Not? NLP with Disaster Tweets — EDA
Getting started with NLP
HybridPose: 6D Object Pose Estimation under Hybrid Representations
https://github.com/chensong1995/HybridPose
https://arxiv.org/abs/2001.01869v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 chensong1995/HybridPose
Implementation of HybridPose: 6D Object Pose Estimation under Hybrid Representation - chensong1995/HybridPose
https://github.com/chensong1995/HybridPose
https://arxiv.org/abs/2001.01869v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 chensong1995/HybridPose
Implementation of HybridPose: 6D Object Pose Estimation under Hybrid Representation - chensong1995/HybridPose
What is Stationarity in Time Series and why should you care
🔗 What is Stationarity in Time Series and why should you care
Time Series are Everywhere — Make sure you know how to Handle them
🔗 What is Stationarity in Time Series and why should you care
Time Series are Everywhere — Make sure you know how to Handle them
Medium
What is Stationarity in Time Series and why should you care
Time Series are Everywhere — Make sure you know how to Handle them
Accelerate Model Training With Batch Normalization
🔗 Accelerate Model Training With Batch Normalization
What is batch normalization and how does it work? What enables it to achieve faster training? This post aims to answer the above questions
🔗 Accelerate Model Training With Batch Normalization
What is batch normalization and how does it work? What enables it to achieve faster training? This post aims to answer the above questions
Medium
Accelerate Model Training With Batch Normalization
What is batch normalization and how does it work? What enables it to achieve faster training? This post aims to answer the above questions
🎥 React with Python Flask and Machine Learning/Vision - THIS IS A TEST!
👁 1 раз ⏳ 5621 сек.
👁 1 раз ⏳ 5621 сек.
In this video I check out a blog I found where Prediction is used inside a python flask and react app on github, and I also setup a starter github with Python Flask using Visual Studio and React JS as a starting point to do some (non-standard) architectural integration using a module blueprint approach. For this, there will be a second and third video to work through the integration points. Fun hacking on it, it was a litle long, but its cool, the next one will be even better :)Vk
React with Python Flask and Machine Learning/Vision - THIS IS A TEST!
In this video I check out a blog I found where Prediction is used inside a python flask and react app on github, and I also setup a starter github with Python Flask using Visual Studio and React JS as a starting point to do some (non-standard) architectural…
🎥 Machine Learning for Beginners - Supervised vs. Unsupervised Learning
👁 1 раз ⏳ 711 сек.
👁 1 раз ⏳ 711 сек.
Welcome back to this series on Machine Learning for Beginners! This video will cover the different types of Machine Learning algorithms - Supervised Learning, Unsupervised Learning, Semisupervised Learning and finally Reinforcement Learning. We're almost to the coding portion - stay tuned!
► JOIN THECODEX TODAY! https://www.thecodex.me/
► FACEBOOK: https://www.facebook.com/TheCodexMe/
► TWITTER: https://twitter.com/thecodexme
► SUPPORT ME ON PATREON: https://www.patreon.com/The_Codex
♦♦♦♦♦♦♦♦♦♦
THECODEXVK Видео
Machine Learning for Beginners - Supervised vs. Unsupervised Learning
Welcome back to this series on Machine Learning for Beginners! This video will cover the different types of Machine Learning algorithms - Supervised Learning, Unsupervised Learning, Semisupervised Learning and finally Reinforcement Learning. We're almost…
A Practical Guide to Feature Engineering in Python
🔗 A Practical Guide to Feature Engineering in Python
Learn the underlying techniques and tools for effective feature engineering in Python
🔗 A Practical Guide to Feature Engineering in Python
Learn the underlying techniques and tools for effective feature engineering in Python
Fritz ai
A Practical Guide to Feature Engineering in Python - Fritz ai
Feature engineering is one of the most important skills needed in data science and machine learning. It has a major influence on the performance of machine learning models and even the quality of insights derived during exploratory data analysis (EDA).… Continue…