Mask-R CNN от новичка до профессионала
Однажды мне потребовалось анализировать информацию с изображения и на выходе иметь тип объекта, его вид, а также, анализируя совокупность кадров, мне нужно было выдать идентификатор объекта и время пребывания в кадре, было нужно определять как перемещался объект и в поле зрения каких камер попадал. Начнем, пожалуй, с первых двух, о анализе кадров в совокупности речь пойдет в следующей части.
🔗 Mask-R CNN от новичка до профессионала
Однажды мне потребовалось анализировать информацию с изображения и на выходе иметь тип объекта, его вид, а также, анализируя совокупность кадров, мне нужно было...
Однажды мне потребовалось анализировать информацию с изображения и на выходе иметь тип объекта, его вид, а также, анализируя совокупность кадров, мне нужно было выдать идентификатор объекта и время пребывания в кадре, было нужно определять как перемещался объект и в поле зрения каких камер попадал. Начнем, пожалуй, с первых двух, о анализе кадров в совокупности речь пойдет в следующей части.
🔗 Mask-R CNN от новичка до профессионала
Однажды мне потребовалось анализировать информацию с изображения и на выходе иметь тип объекта, его вид, а также, анализируя совокупность кадров, мне нужно было...
Хабр
Mask R-CNN от новичка до профессионала
Однажды мне потребовалось анализировать информацию с изображения и на выходе иметь тип объекта, его вид, а также, анализируя совокупность кадров, мне нужно было...
Log loss function math explained
🔗 Log loss function math explained
Have you ever worked on a classification problem in Machine Learning? If yes, then you might have come across cross-entropy or log loss…
🔗 Log loss function math explained
Have you ever worked on a classification problem in Machine Learning? If yes, then you might have come across cross-entropy or log loss…
Medium
Log loss function math explained
Have you ever worked on a classification problem in Machine Learning? If yes, then you might have come across cross-entropy or log loss…
This Will Change the Way You Look at GANs
🔗 This Will Change the Way You Look at GANs
Real-time visualizations of GAN learning and mode collapse
🔗 This Will Change the Way You Look at GANs
Real-time visualizations of GAN learning and mode collapse
Medium
This Will Change the Way You Look at GANs
Real-time visualizations of GAN learning and mode collapse
A simulation framework to analyze airplane boarding methods
🔗 A simulation framework to analyze airplane boarding methods
Developing a Python program to calculate boarding times for various configurations and to visualize the boarding procedure
🔗 A simulation framework to analyze airplane boarding methods
Developing a Python program to calculate boarding times for various configurations and to visualize the boarding procedure
Medium
A simulation framework to analyze airplane boarding methods
Developing a Python program to calculate boarding times for various configurations and to visualize the boarding procedure
🎥 Applied Machine Learning - Peter Heiberg
👁 1 раз ⏳ 1838 сек.
👁 1 раз ⏳ 1838 сек.
In this talk Peter will tell the story about how he applied machine learning to enhance the user experience of data entry and search using natural language processing and face recognition in one of the spare time projects, a large crowd sourced wiki. The results of those enhancements exceeded his wildest expectations.
Speaker Peter Heiberg
A seasoned software developer with a passion for sharing knowledge. He has been working as a consultant the last 9 years. Peter has spent the last 20 years developing liVk
Applied Machine Learning - Peter Heiberg
In this talk Peter will tell the story about how he applied machine learning to enhance the user experience of data entry and search using natural language processing and face recognition in one of the spare time projects, a large crowd sourced wiki. The…
🎥 Top 10 Artificial Intelligence Technologies in 2020 | Artificial Intelligence Trends | Edureka
👁 1 раз ⏳ 622 сек.
👁 1 раз ⏳ 622 сек.
🔥 Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training
This Edureka video on "Top 10 Technologies in AI" will list out the top trending technologies that are going to take over the IT industries with the help of Artificial Intelligence. These technologies are most likely to start showing their dominance in the market from 2020 itself.
-----------------------------------------------------------
🔵 Post Graduate Program in AI and Machine LearniVk
Top 10 Artificial Intelligence Technologies in 2020 | Artificial Intelligence Trends | Edureka
🔥 Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training
This Edureka video on "Top 10 Technologies in AI" will list out the top trending technologies that are going to take over the IT industries…
This Edureka video on "Top 10 Technologies in AI" will list out the top trending technologies that are going to take over the IT industries…
Anatomy of an AI System
🔗 Anatomy of an AI System
Anatomy of an AI System - The Amazon Echo as an anatomical map of human labor, data and planetary resources. By Kate Crawford and Vladan Joler (2018)
🔗 Anatomy of an AI System
Anatomy of an AI System - The Amazon Echo as an anatomical map of human labor, data and planetary resources. By Kate Crawford and Vladan Joler (2018)
Anatomy of an AI System
Anatomy of an AI System - The Amazon Echo as an anatomical map of human labor, data and planetary resources. By Kate Crawford and Vladan Joler (2018)
Good Feature Matching: Towards Accurate, Robust VO/VSLAM with Low Latency
https://github.com/ivalab/gf_orb_slam2
https://arxiv.org/abs/2001.00714v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 ivalab/gf_orb_slam2
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities - ivalab/gf_orb_slam2
https://github.com/ivalab/gf_orb_slam2
https://arxiv.org/abs/2001.00714v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 ivalab/gf_orb_slam2
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities - ivalab/gf_orb_slam2
Камера с функцией слежения за объектом
Хочу сделать автономного дрона, который бы сам мог найти дорогу к цели и обратно, при этом обойти все препятствия ни кого не задев. Решил начать с нейросети и вебки. Так и получился этот проект
🔗 Камера с функцией слежения за объектом
Хочу сделать автономного дрона, который бы сам мог найти дорогу к цели и обратно, при этом обойти все препятствия ни кого не задев. Решил начать с нейросети и ве...
Хочу сделать автономного дрона, который бы сам мог найти дорогу к цели и обратно, при этом обойти все препятствия ни кого не задев. Решил начать с нейросети и вебки. Так и получился этот проект
🔗 Камера с функцией слежения за объектом
Хочу сделать автономного дрона, который бы сам мог найти дорогу к цели и обратно, при этом обойти все препятствия ни кого не задев. Решил начать с нейросети и ве...
Хабр
Камера с функцией слежения за объектом
Хочу сделать автономного дрона, который бы сам мог найти дорогу к цели и обратно, при этом обойти все препятствия ни кого не задев. Решил начать с нейросети и вебки. Так и получился этот...
Imagining a world without Transformers — Single Headed Attention RNN
🔗 Imagining a world without Transformers — Single Headed Attention RNN
Distilling key ideas from one of the most entertaining NLP papers picturing a world without the BERT family of models
🔗 Imagining a world without Transformers — Single Headed Attention RNN
Distilling key ideas from one of the most entertaining NLP papers picturing a world without the BERT family of models
Medium
Imagining a world without Transformers — Single Headed Attention RNN
Distilling key ideas from one of the most entertaining NLP papers picturing a world without the BERT family of models
Donald Knuth: Algorithms, Complexity, Life, and The Art of Computer Programming | AI Podcast
🔗 Donald Knuth: Algorithms, Complexity, Life, and The Art of Computer Programming | AI Podcast
Donald Knuth is one of the greatest and most impactful computer scientists and mathematicians ever. He is the recipient in 1974 of the Turing Award, considered the Nobel Prize of computing. He is the author of the multi-volume work, the magnum opus, The Art of Computer Programming. He made several key contributions to the rigorous analysis of the computational complexity of algorithms. He popularized asymptotic notation, that we all affectionately know as the big-O notation. He also created the TeX typesett
🔗 Donald Knuth: Algorithms, Complexity, Life, and The Art of Computer Programming | AI Podcast
Donald Knuth is one of the greatest and most impactful computer scientists and mathematicians ever. He is the recipient in 1974 of the Turing Award, considered the Nobel Prize of computing. He is the author of the multi-volume work, the magnum opus, The Art of Computer Programming. He made several key contributions to the rigorous analysis of the computational complexity of algorithms. He popularized asymptotic notation, that we all affectionately know as the big-O notation. He also created the TeX typesett
YouTube
Donald Knuth: Algorithms, Complexity, and The Art of Computer Programming | Lex Fridman Podcast #62
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
Unbalanced data loading for multi-task learning in PyTorch
🔗 Unbalanced data loading for multi-task learning in PyTorch
Working on multi-task learning (MTL) problems require unique training setup, mainly in terms of data handling, model architecture, and…
🔗 Unbalanced data loading for multi-task learning in PyTorch
Working on multi-task learning (MTL) problems require unique training setup, mainly in terms of data handling, model architecture, and…
Medium
Unbalanced data loading for multi-task learning in PyTorch
Working on multi-task learning (MTL) problems require unique training setup, mainly in terms of data handling, model architecture, and…
Calculating Catchment with Human Mobility Data
🔗 Calculating Catchment with Human Mobility Data
Leveraging Human Mobility Data to identify potential customers
🔗 Calculating Catchment with Human Mobility Data
Leveraging Human Mobility Data to identify potential customers
Medium
Calculating Catchment Areas with Human Mobility Data
Leveraging Human Mobility Data to identify potential customers
A Very Unlikely Chess Game
🔗 A Very Unlikely Chess Game
Almost 25 years after Kasparov vs. Deep Blue, another seminal man vs. machine matchup: Neither competitor has much to be proud of here. White has a poor opening. Black screws up and loses his queen…
🔗 A Very Unlikely Chess Game
Almost 25 years after Kasparov vs. Deep Blue, another seminal man vs. machine matchup: Neither competitor has much to be proud of here. White has a poor opening. Black screws up and loses his queen…
Slate Star Codex
A Very Unlikely Chess Game
Almost 25 years after Kasparov vs. Deep Blue, another seminal man vs. machine matchup: Neither competitor has much to be proud of here. White has a poor opening. Black screws up and loses his queen…
🎥 Deep Learning for Higgs and New Physics Searches at the LHC
👁 1 раз ⏳ 3224 сек.
👁 1 раз ⏳ 3224 сек.
Professor Javier Duarte
2019 11 11
University of California, San Diego
Since the discovery of the Higgs boson at the Large Hadron Collider in 2012, developments in deep learning have expanded our ability to study the production of Higgs bosons and other particles with very large momenta. By studying these particles, we may be able to discover new physics at very high energy scales inaccessible directly at the LHC. I will explain these searches and talk about the direction that deep learning is taking in pVk
Deep Learning for Higgs and New Physics Searches at the LHC
Professor Javier Duarte
2019 11 11
University of California, San Diego
Since the discovery of the Higgs boson at the Large Hadron Collider in 2012, developments in deep learning have expanded our ability to study the production of Higgs bosons and other…
2019 11 11
University of California, San Diego
Since the discovery of the Higgs boson at the Large Hadron Collider in 2012, developments in deep learning have expanded our ability to study the production of Higgs bosons and other…
🎥 Deep Learning Formulas for NLP Applications | Chenglong Chen | Kaggle
👁 1 раз ⏳ 1633 сек.
👁 1 раз ⏳ 1633 сек.
Content note: Speaker is presenting in Mandarin but presentation and subtitles are in English.
Kaggle Days China edition was held on October 19-20 at Damei Center, Beijing.
More than 400 data scientists and enthusiasts gathered to learn, make friends, and compete in a full-day offline competition.
Kaggle Days is produced by LogicAI and Kaggle.
About LogicAI:
LogicAI is a boutique Data Science consultancy company owned by Kaggle fans and Grandmasters. As a global company, they do custom end-to-end AI andVk
Deep Learning Formulas for NLP Applications | Chenglong Chen | Kaggle
Content note: Speaker is presenting in Mandarin but presentation and subtitles are in English.
Kaggle Days China edition was held on October 19-20 at Damei Center, Beijing.
More than 400 data scientists and enthusiasts gathered to learn, make friends, and…
Kaggle Days China edition was held on October 19-20 at Damei Center, Beijing.
More than 400 data scientists and enthusiasts gathered to learn, make friends, and…
Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB
Clickhouse — это столбцовая система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее используют Яндекс, CloudFlare, VK.com, Badoo и другие сервисы по всему миру для хранения действительно больших объемов данных (вставка тысяч строк в секунду или петабайты данных, хранящихся на диске).
В обычной, «строковой» СУБД, примерами которых служат MySQL, Postgres, MS SQL Server, данные хранятся в таком порядке:
При этом значения, относящиеся к одной строке, физически хранятся рядом. В столбцовых СУБД значения из разных столбцов хранятся отдельно, а данные одного столбца – вместе:
🔗 Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB
Clickhouse — это столбцовая система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее...
Clickhouse — это столбцовая система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее используют Яндекс, CloudFlare, VK.com, Badoo и другие сервисы по всему миру для хранения действительно больших объемов данных (вставка тысяч строк в секунду или петабайты данных, хранящихся на диске).
В обычной, «строковой» СУБД, примерами которых служат MySQL, Postgres, MS SQL Server, данные хранятся в таком порядке:
При этом значения, относящиеся к одной строке, физически хранятся рядом. В столбцовых СУБД значения из разных столбцов хранятся отдельно, а данные одного столбца – вместе:
🔗 Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB
Clickhouse — это столбцовая система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее...
Хабр
Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB
Clickhouse — это колоночная система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее используют Яндекс, CloudFlare, VK.com,...
MuZero: DeepMind’s New AI Mastered More Than 50 Games
🔗 MuZero: DeepMind’s New AI Mastered More Than 50 Games
❤️ Check out Linode here and get $20 free credit on your account: https://www.linode.com/papers 📝 The paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" is available here: https://arxiv.org/abs/1911.08265 🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible: Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Benji Rabhan, Brian Gilman, Bryan Learn, Christian Ahlin, Claudio Fernandes, Daniel Hasegan, Dan Kennedy, Dennis
🔗 MuZero: DeepMind’s New AI Mastered More Than 50 Games
❤️ Check out Linode here and get $20 free credit on your account: https://www.linode.com/papers 📝 The paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" is available here: https://arxiv.org/abs/1911.08265 🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible: Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Benji Rabhan, Brian Gilman, Bryan Learn, Christian Ahlin, Claudio Fernandes, Daniel Hasegan, Dan Kennedy, Dennis
YouTube
MuZero: DeepMind’s New AI Mastered More Than 50 Games
❤️ Check out Linode here and get $20 free credit on your account: https://www.linode.com/papers
📝 The paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" is available here:
https://arxiv.org/abs/1911.08265
🙏 We would like to thank…
📝 The paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" is available here:
https://arxiv.org/abs/1911.08265
🙏 We would like to thank…