Neural Networks | Нейронные сети
11.6K subscribers
801 photos
183 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Sebastian Thrun: Flying Cars, Autonomous Vehicles, and Education | Artificial Intelligence Podcast

🔗 Sebastian Thrun: Flying Cars, Autonomous Vehicles, and Education | Artificial Intelligence Podcast
Sebastian Thrun is one of the greatest roboticists, computer scientists, and educators of our time. He led development of the autonomous vehicles at Stanford that won the 2005 DARPA Grand Challenge and placed second in the 2007 DARPA Urban Challenge. He then led the Google self-driving car program which launched the self-driving revolution. He taught the popular Stanford course on Artificial Intelligence in 2011 which was one of the first MOOCs. That experience led him to co-found Udacity, an online educati
🎥 Microsoft SEAL
👁 1 раз 4494 сек.
The Private AI Bootcamp offered by Microsoft Research (MSR) focused on tutorials of building privacy-preserving machine learning services and applications with homomorphic encryption (HE). Around 30 PhD students were invited to gather at the Microsoft Research Lab in Redmond on Dec 2nd – 4th, 2019. The program contents were specifically designed for training. Participants mastered the use of HE, the Microsoft SEAL library, and the methodology behind building privacy-preserving machine learning solutions. As
​ИИ, пытающийся избежать проблем, научился сложному поведению

В обучении с подкреплением (Reinforcement Learning) часто используется любопытство в качестве мотивации для ИИ. Заставляющее его искать новые ощущения и исследовать окружающий мир. Но жизнь полна неприятных сюрпризов. Можно упасть с обрыва и с точки зрения любопытства это всегда будут очень новые и интересные ощущения. Но явно не то, к чему надо стремиться.
Разработчики из Berkeley перевернули задачу для виртуального агента с ног на голову: главной мотивирующей силой сделали не любопытство, а наоборот — стремление всеми силами избегать любой новизны. Но "ничего не делать" оказалось сложнее, чем кажется. Будучи помещенным в постоянно меняющийся окружающий мир, ИИ пришлось обучиться сложному поведению, чтобы избегать новых ощущений.

🔗 ИИ, пытающийся избежать проблем, научился сложному поведению
В обучении с подкреплением (Reinforcement Learning) часто используется любопытство в качестве мотивации для ИИ. Заставляющее его искать новые ощущения и исследо...
Python code for Artificial Intelligence: Foundations of Computational Agents — D. L. Poole, A. K. Mackworth (en) 2018

📝 Python code for Artificial Intelligence (en).pdf - 💾1 062 018
Машинное Обучение
Лекция 1. Введение в машинное обучение
Лекция 2. Методы обработки данных. Задача классификации
Лекция 3. Линейные модели
Лекция 4. Отбор признаков и понижение размерности
Лекция 5. Решающие деревья и ансамбли. Градиентный бустинг
Лекция 6. Кластеризация
#video #ai


#video ( интересные видеоуроки https://vk.com/videos-3183750 )

🎥 Машинное обучение. Лекция 1. Введение в машинное обучение
👁 455 раз 2829 сек.
Все введенные на лекции понятия опираются на конспект К.В. Воронцова: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf

🎥 Машинное обучение. Лекция 2
👁 179 раз 2180 сек.


🎥 Машинное обучение. Лекция 3. Линейные модели
👁 105 раз 2867 сек.
В данном видео речь идёт о линейных моделях в задачах регрессии и классификации. Введены такие понятия, как регуляризация, функция правдоподобия и ...

🎥 Машинное обучение . Лекция 4. Отбор признаков и понижение размерности
👁 59 раз 2803 сек.


🎥 Машинное обучение. Лекция 5. Решающие деревья и ансамбли. Градиентный бустинг
👁 58 раз 1936 сек.
https://github.com/miptmlschool/mlschl/tree/master/Seminars/Seminar_5

🎥 Машинное обучение. Лекция 6. Кластеризация
👁 67 раз 1130 сек.
https://github.com/miptmlschool/mlschl/blob/master/lections/Lection%206.pdf
🎥 Vehicle Detection Tracking And Counting Using Deep Learning Final Product
👁 2 раз 76 сек.
in this we trained out own custom YOLOv3 for object detection and classification and then using SORT tracker we finally track each vehicle and assign Unique ID's to each vehicle but there was problem of ID's changing because of missing detection and also because of Dynamic Range of scene so we finally use additionally marker base approach to keep count of tracked and classified vehicles.
Python Machine Learning Case Studies — Danish Haroon

Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 Открыть в Telegram



📝 Python Machine Learning Case Studies (en).pdf - 💾8 336 682