Neural Networks | Нейронные сети
11.6K subscribers
804 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Speech Recognition Analysis

🔗 Speech Recognition Analysis
From Siri to smart home devices, speech recognition is widely used in our lives. This speech recognition project is to utilize Kaggle…
​Ищем пневмонию на рентгеновских снимках с Fast.ai
Наткнулся на статью в блоге компании Школа Данных и решил проверить, на что способна библиотека Fast.ai на том же датасете, который упоминается в статье. Здесь вы не найдете рассуждений о том, своевременно и правильно диагностировать пневмонию, будут ли нужны врачи-рентгенологи, можно ли считать предсказание нейронной сети медицинским диагнозом и т.д. Основная цель — показать, что машинное обучение в современных библиотеках может быть довольно простым (буквально требует немного строчек кода) и дает отличные результаты. Запомним пока результат из статьи (precision = 0.84, recall = 0.96) и посмотрим, что получится у нас.

🔗 Ищем пневмонию на рентгеновских снимках с Fast.ai
Наткнулся на статью в блоге компании Школа Данных и решил проверить, на что способна библиотека Fast.ai на том же датасете, который упоминается в статье. Здесь в...
​Бибер и Билан махают ручкой. AI научился генерировать музыку

Самые активные реальные певцы способны выпустить один, может быть, два музыкальных альбома за год. У рэперов иногда получается три-четыре микстейпа. Но компания Auxuman собирается выпускать по полноценному музыкальному альбому, с такими звездами как Йона, Мони, Джемини, Зоя и Хексе, каждый месяц. Секрет такой продуктивности? Машинное обучение и нейросети. Фирма строит «следующее поколение виртуальных артистов», которые призваны полностью заменить реальных звезд.

🔗 Бибер и Билан махают ручкой. AI научился генерировать музыку
Самые активные реальные певцы способны выпустить один, может быть, два музыкальных альбома за год. У рэперов иногда получается три-четыре микстейпа. Но компани...
​Инструменты для разработчиков ПО: открытые фреймворки и библиотеки машинного обучения
Продолжаем нашу серию материалов, посвященных открытым инструментам для разработчиков. Сегодня рассказываем о фреймворках и библиотеках для МО — Transformers, Accord.NET и MLflow.

🔗 Инструменты для разработчиков ПО: открытые фреймворки и библиотеки машинного обучения
Продолжаем нашу серию материалов, посвященных открытым инструментам для разработчиков. Сегодня рассказываем о фреймворках и библиотеках для МО — Transformers, Ac...
Искусственный Интеллект С Примерами На Python

📝 Iskusstvenny_intellekt_s_primerami_na_Python_2019_Pratik_Dzhoshi.pdf - 💾72 984 400
🎥 [Part 12] || Machine Learning A-Z: Hands-On Python & R In Data Science 2019
👁 1 раз 4712 сек.
Learn to create Machine Learning Algorithms in Python and R from two Data Science experts. Code templates included.

###############################

Created by Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, SuperDataScience Support

###############################

What you'll learn

Master Machine Learning on Python & R

Have a great intuition of many Machine Learning models

Make accurate predictions

Make powerful analysis

Make robust Machine Learning models

Create strong added value to
ищу лучшего в мире программиста, зп не обещаю а интересную жизнь- точно
Neural Puppet: Generative Layered Cartoon Characters

https://arxiv.org/abs/1910.02060v1

🔗 Neural Puppet: Generative Layered Cartoon Characters
We propose a learning based method for generating new animations of a cartoon character given a few example images. Our method is designed to learn from a traditionally animated sequence, where each frame is drawn by an artist, and thus the input images lack any common structure, correspondences, or labels. We express pose changes as a deformation of a layered 2.5D template mesh, and devise a novel architecture that learns to predict mesh deformations matching the template to a target image. This enables us to extract a common low-dimensional structure from a diverse set of character poses. We combine recent advances in differentiable rendering as well as mesh-aware models to successfully align common template even if only a few character images are available during training. In addition to coarse poses, character appearance also varies due to shading, out-of-plane motions, and artistic effects. We capture these subtle changes by applying an image translation network to refine the mesh rendering, providing an
​Announcing Support for Native Editing of Jupyter Notebooks in VS Code | Python

🔗 Announcing Support for Native Editing of Jupyter Notebooks in VS Code | Python
With today’s October release of the Python extension, we’re excited to announce the support of native editing of Jupyter notebooks inside Visual Studio Code! You can now directly edit .ipynb files and get the interactivity of Jupyter notebooks with all of the power of VS Code.
​Линейная регрессия и градиентный спуск
Пусть в некоторой предметной области исследуются показатели X и Y, которые имеют количественное выражение.

При этом есть все основания полагать, что показатель Y зависит от показателя X. Это положение может быть как научной гипотезой, так и основываться на элементарном здравом смысле. К примеру, возьмем продовольственные магазины.

Обозначим через:

X — торговую площадь(кв. м.)

Y — годовой товарооборот(млн. р.)

Очевидно, что чем выше торговая площадь, тем выше годовой товарооборот(предполагаем линейную зависимость).

Представим, что у нас есть данные о некоторых n магазинах(торговая площадь и годовой товарооборот) — наш датасет и k торговых площадей(X), для которых мы хотим предсказать годовой товарооборот(Y) — наша задача.

Выдвинем гипотезу, что наше значение Y зависит от X в виде: Y = a + b * X

Чтобы решить нашу задачу, мы должны подобрать коэффициенты a и b.

🔗 Линейная регрессия и градиентный спуск
Пусть в некоторой предметной области исследуются показатели X и Y, которые имеют количественное выражение. При этом есть все основания полагать, что показатель...
​Возможности языка Q и KDB+ на примере сервиса реального времени
О том, что такое база KDB+, язык программирования Q, какие у них есть сильные и слабые стороны, можно прочитать в моей предыдущей статье и кратко во введении. В статье же мы реализуем на Q сервис, который будет обрабатывать входящий поток данных и высчитывать поминутно различные агрегирующие функции в режиме “реального времени” (т.е. будет успевать все посчитать до следующей порции данных). Главная особенность Q состоит в том, что это векторный язык, позволяющий оперировать не единичными объектами, а их массивами, массивами массивов и другими сложносоставными объектами. Такие языки как Q и родственные ему K, J, APL знамениты своей краткостью. Нередко программу, занимающую несколько экранов кода на привычном языке типа Java, можно записать на них в несколько строк. Именно это я и хочу продемонстрировать в этой статье.

🔗 Возможности языка Q и KDB+ на примере сервиса реального времени
О том, что такое база KDB+, язык программирования Q, какие у них есть сильные и слабые стороны, можно прочитать в моей предыдущей статье и кратко во введении. В...