Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Feature Extraction Techniques

🔗 Feature Extraction Techniques
An end to end guide on how to reduce a dataset dimensionality using Feature Extraction Techniques such as: PCA, ICA, LDA, LLE, t-SNE and…
​Kaggle Live Coding: Automating report generation | Kaggle

🔗 Kaggle Live Coding: Automating report generation | Kaggle
This week Rachael will continue to work on her forum clustering project (https://www.kaggle.com/rebeccaturner/forum-post-embeddings-clustering-1-0). Now that we've got our clusters, we need to generate better reports for them! SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spi
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🎥 On the GPU - Deep Learning and Neural Networks with Python and Pytorch p.7
👁 2 раз 1923 сек.
Text-based tutorials and sample code: https://pythonprogramming.net/gpu-deep-learning-neural-network-pytorch/


How to use cloud GPUs: https://pythonprogramming.net/cloud-gpu-compare-and-setup-linode-rtx-6000/
Linode Cloud GPUs $20 credit: https://linode.com/sentdex

Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ/join
Discord: https://discord.gg/sentdex
Support the content: https://pythonprogramming.net/support-donate/
Twitter: https://twitter.com/sentdex
Instagram: https://ins
🎥 [VDT19] Applied machine learning: a few lessons I learned the hard way by Alessandro Giusti
👁 1 раз 2681 сек.
Machine Learning is easy; solving problems with machine learning is hard. In the last 10 years, I approached dozens of real-world problems with machine learning and deep learning, with varying degrees of success. In the process I made many mistakes and eventually learned how to avoid them. I noticed that many of these mistakes are pretty common among novice practitioners, so this talk might save you some time.
​Грокаем PyTorch
Привет, Хабр!

У нас в продаже появилась долгожданная книга о библиотеке PyTorch.

Поскольку весь необходимый базовый материал о PyTorch вы узнаете из этой книги, мы напоминаем о пользе процесса под названием «grokking» или «углубленное постижение» той темы, которую вы хотите усвоить. В сегодняшней публикации мы расскажем, как Кай Арулкумаран (Kai Arulkumaran) грокнул PyTorch (без картинок). Добро пожаловать под кат.

🔗 Грокаем PyTorch
Привет, Хабр! У нас в продаже появилась долгожданная книга о библиотеке PyTorch. Поскольку весь необходимый базовый материал о PyTorch вы узнаете из этой кни...
🎥 Reinforcement Learning: Crash Course AI#9
👁 1 раз 688 сек.
Reinforcement learning is particularly useful in situations where we want to train AIs to have certain skills we don’t fully understand ourselves. Unlike some of the techniques we’ve discussed so far, reinforcement learning generally only looks at how an AI performs a task AFTER it has completed it. And when an AI completes that task figuring out when and how to reward an AI, called credit assignment, is one of the hardest parts of reinforcement learning. So today, we’re going to explore these ideas, intro