Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​«Когда я слышу про распознавание образов, я никогда не спрашиваю, хорошие там алгоритмы или плохие. Я спрашиваю только, отличают ли они мотоцикл от трактора».

Особенности национального распознавания образов: http://amp.gs/AsHP

🔗 Особенности национального распознавания образов
«Когда я слышу про распознавание образов, я никогда не спрашиваю, хорошие там алгоритмы или плохие. Я спрашиваю только, отличают ли они мотоцикл от трактора.» ©...
​Технологические соревнования Радиофест-2019
Дорогие друзья, мы рады сообщить, что в конце октября состоится Радиофест-2019 — технологические соревнования по радиотехнике. Все официальные нормативные документы, регламент с описанием конкурсных заданий и заявка на участие доступны на сайте тут, здесь же, на просторах Хабра, хочется поговорить о сути соревнований, для чего мы все это затеяли, какие цели мы перед собой ставим и получить первые отзывы сообщества для того, что бы сделать грядущий и последующие Радиофесты лучше.

🔗 Технологические соревнования Радиофест-2019
Дорогие друзья, мы рады сообщить, что в конце октября состоится Радиофест-2019 — технологические соревнования по радиотехнике. Все официальные нормативные докуме...
🎥 Training Convnet - Deep Learning and Neural Networks with Python and Pytorch p.6
👁 1 раз 2516 сек.
Welcome to part 6 of the deep learning with Python and Pytorch tutorials. Leading up to this tutorial, we've covered how to make a basic neural network, and now we're going to cover how to make a slightly more complex neural network: The convolutional neural network, or Convnet/CNN.

Text-based tutorials and sample code: https://pythonprogramming.net/convnet-model-deep-learning-neural-network-pytorch/

Linode Cloud GPUs $20 credit: https://linode.com/sentdex

Channel membership: https://www.youtube.com/chan
Нейронный сети
- Нейронные сети за 30 минут: от теории до практики.
- Chatbot на базе рекуррентной нейронной сети своими руками с нуля
- Обучение нейронных сетей методом обратного распространения ошибки.
- Sentiment analysis русскоязычных твитов при помощи TensorFlow.
- Распределенное обучение нейронных сетей с MXNet.
#neuralnetwork


#video

🎥 Нейронные сети за 30 минут: от теории до практики.
👁 222 раз 1764 сек.
Я расскажу вам что такое нейронные сети, и как они используются. За 30 минут вы узнаете минимально необходимую теорию а так же сможете написать свою первую многослойную нейронную сеть самостоятельно (она займет не более 50 строк кода!).

Поддержать проект можно вот тут: https://www.patreon.com/b0noi

Код: https://s3-us-west-1.amazonaws.com/youtube-channel/intro.ipynb
Что такое матрица: https://goo.gl/3kZfWp
Действия над матрицами (в том числе умножения): http://mathprofi.ru/deistviya_s_matricami.html


🎥 Chatbot на базе рекуррентной нейронной сети своими руками с нуля
👁 73 раз 2691 сек.
Этим видео я хочу показать насколько просто сегодня использовать нейронные сети. Вокруг меня довольно много людей одержимы идеей того, что нейронки...

🎥 Обучение нейронных сетей методом обратного распространения ошибки.
👁 46 раз 2180 сек.
Поговорим о там как можно обучить сеть методом обратного распространения ошибки. В данном видео затронуты (но не раскрыты) такие темы как:
- производная https://youtu.be/qoHWa0eJHq4
- число е https://youtu.be/2Z2j4KqZ3QY

Поддержать проект можно вот тут: https://www.patreon.com/b0noi

Notebook: https://s3-us-west-1.amazonaws.com/youtube-channel/nn_training_2_layer_network.ipynb


🎥 Sentiment analysis русскоязычных твитов при помощи TensorFlow.
👁 32 раз 2307 сек.
В данном видео я покажу вам как при помощи TensorFlow можно быстро и легкой создать нейронную сеть которая будет уметь анализировать эмоциональный окрас(Sentiment analysis) русскоязычных твитов.

IPython notebook можно найти вот тут: https://github.com/b0noI/ml-lessons/blob/master/sentiments_rus/sentiments.ipynb
Поддержать проект можно вот тут: https://www.patreon.com/b0noi

А еще у нас есть Java курсы, найти которые можно вот тут: https://map.hexlet.io/stacks/java


🎥 Распределенное обучение нейронных сетей с MXNet.
👁 25 раз 2611 сек.
Ссылки:
* Статья на Хабре - https://habrahabr.ru/post/334968/
* Страничка на Patreon - https://www.patreon.com/b0noi

Наши группы для общения:
* Google+ - https://plus.google.com/communities/103002092207368562864
* Slack - http://slack-ru.hexlet.io/ - группа #java
* VK - http://vk.com/java8
* FB - https://www.facebook.com/groups/1000400156742696
* Twitter - https://twitter.com/JavaHexlet
* YouTube - http://youtube.com/JavaCoursesWithKovalevskyi
* Web site - http://java.kovalevskyi.com/
ок.tech Data Толк #3: Рекомендательные системы

6 ноября в московском офисе компании Одноклассники состоится ок.tech Data Толк #3, в этот раз мы решили посвятить мероприятие рекомендательным системам. Вместе с коллегами из OK.ru, Joom и СколТеха поговорим про прошедший RecSys19, а также о теории, практике и трендах рекомендательных систем. Влад Грозин сделает обзор культовой конференции RecSys19. Евгений Фролов расскажет один из докладов о HybridSVD, которую используют для построения гибридных рекомендательных систем. Затем перейдем от теории к практике, и Андрей Кузнецов поделится практическим опытом улучшения рекомендательных систем для групп Одноклассников. Как всегда, после докладов будет дискуссия, где каждый сможет задать любой вопрос спикерам. Вести мероприятие будет Алексей Чернобровов.
Ждем всех, кому интересна тема создания, улучшения и эксплуатации рекомендательных систем.

Зарегистрироваться на мероприятие.

🔗 ок.tech Data Толк #3: Рекомендательные системы
6 ноября в московском офисе компании Одноклассники состоится ок.tech Data Толк #3, в этот раз мы решили посвятить мероприятие рекомендательным системам. Вместе...
​Квазиньютоновские методы, или когда вторых производных для Атоса слишком много
При первом знакомстве с квазиньютоновскими методами можно удивиться дважды. Во-первых, после беглого взгляда на формулы охватывают сомнения, что это вообще может работать. Однако же они работают. Дальше кажется сомнительным, что они будут работать хорошо. И тем удивительнее видеть то, насколько они превосходят по скорости разнообразные вариации градиентного спуска, причем не на специально построенных задачах, а на самых настоящих, взятых из практики. И если после этого еще остаются сомнения вперемешку с интересом — то нужно разбираться в том, почему вообще работает это нечто.

🔗 Квазиньютоновские методы, или когда вторых производных для Атоса слишком много
При первом знакомстве с квазиньютоновскими методами можно удивиться дважды. Во-первых, после беглого взгляда на формулы охватывают сомнения, что это вообще может...
​Подготовка данных в Data Science-проекте: рецепты для молодых хозяек

В предыдущей статье я рассказывала про структуру Data Science-проекта по материалам методологии IBM: как он устроен, из каких этапов состоит, какие задачи решаются на каждой стадии. Теперь я бы хотела сделать обзор самой трудоемкой стадии, которая может занимать до 90% общего времени проекта: это этапы, связанные с подготовкой данных -сбор, анализ и очистка.

В оригинальном описании методологии Data Science-проект сравнивается с приготовлением блюда, а аналитик - с шеф поваром. Соответственно, этап подготовки данных сравнивается с подготовкой продуктов: после того, как на этапе анализа бизнес-задачи мы определились с рецептом блюда, которое будем готовить, необходимо найти, собрать в одном месте, очистить и нарезать ингредиенты. Соответственно, от того, насколько качественно был выполнен этот этап, будет зависеть вкус блюда (предположим, что с рецептом мы угадали, тем более рецептов в открытом доступе полно). Работа с ингредиентами, то есть подготовка данных - это всегда ювелирное, трудоемкое и ответственное дело: один испорченный или недомытый продукт - и весь труд впустую.

🔗 Подготовка данных в Data Science-проекте: рецепты для молодых хозяек
В предыдущей статье я рассказывала про структуру Data Science-проекта по материалам методологии IBM: как он устроен, из каких этапов состоит, какие задачи решаю...
​Математика для Data Science. Новый курс от OTUS
Всем привет, сегодня хотим поговорить о запуске нового курса «Математика для Data Science», а точнее целой серии курсов, подробнее об этом в нашей публикации.

Не все, учась в школе, понимают, как в жизни им пригодится математика. Самый распространенный ответ – считать деньги, но не все рождаются крутыми финансистами. Это понимают и учителя математики, поэтому часто преподают через пень-колоду. И вот человек школу закончил, зачем нужна математика, так и не понял, но деньги считать (и свои, и чужие) научился, посчитал и захотел работать в IT, например, в сфере машинного обучения, чтобы зарабатывать немало. Тут-то и стало ясно, для чего нужна математика! Но школа, как и институт, уже давно прошли…

🔗 Математика для Data Science. Новый курс от OTUS
Всем привет, сегодня хотим поговорить о запуске нового курса «Математика для Data Science», а точнее целой серии курсов, подробнее об этом в нашей публикации.
RESHI.RU — робот решает и объясняет школьные текстовые задачи по математике
Введение
Когда я объяснял своему ребёнку в 4-м классе, как решать текстовую задачку по математике, то неожиданно понял две вещи. Во-первых, процесс объяснения решения можно автоматизировать. А во-вторых, для большинства школьных вычислительных задач подходит универсальный метод через систему уравнений, который почему-то пока не изучается в младших классах школы. Причём освоение этого метода вполне по силам среднему школьнику и позволит справляться с ранее недоступными ему задачами. Результатом этого понимания явился сайт [RESHI.RU](http://reshi.ru) с объясняющим задачи роботом.

🔗 RESHI.RU — робот решает и объясняет школьные текстовые задачи по математике
Введение Когда я объяснял своему ребёнку в 4-м классе, как решать текстовую задачку по математике, то неожиданно понял две вещи. Во-первых, процесс объяснения ре...