Predicting PewDiePie’s daily subscribers using Linear Regression.
🔗 Predicting PewDiePie’s daily subscribers using Linear Regression.
Let us understand how to predict PewDiePie’s daily subscribers using Linear Regression.
🔗 Predicting PewDiePie’s daily subscribers using Linear Regression.
Let us understand how to predict PewDiePie’s daily subscribers using Linear Regression.
Medium
Predicting PewDiePie’s daily subscribers using Linear Regression.
Let us understand how to predict PewDiePie’s daily subscribers using Linear Regression.
🎥 Lecture #1b: Introduction to Machine Learning (9/11/2019)
👁 1 раз ⏳ 5400 сек.
👁 1 раз ⏳ 5400 сек.
Lecture #1b: Introduction to Machine Learning
CIS 419/519 2019C Applied Machine Learning on 9/11/2019 WedVk
Lecture #1b: Introduction to Machine Learning (9/11/2019)
Lecture #1b: Introduction to Machine Learning
CIS 419/519 2019C Applied Machine Learning on 9/11/2019 Wed
CIS 419/519 2019C Applied Machine Learning on 9/11/2019 Wed
Нейросеть для классификации спутниковых снимков с помощью Tensorflow на Python
Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для решения сложных проблем, в том числе геопространственных. Надеюсь, вы знакомы с датасетами спутниковых снимков, в частности, Landsat 5 TM. Если вы немного разбираетесь в работе алгоритмов машинного обучения, то это поможет вам быстро освоить это руководство. А для тех, кто не разбирается, будет достаточным знать, что, по сути, машинное обучение заключается в установлении взаимосвязей между несколькими характеристиками (набором признаков Х) объекта с другим его свойством (значением или меткой, — целевой переменной Y). Мы подаём на вход модели много объектов, для которых известны признаки и значение целевого показателя/класса объекта (размеченные данные) и обучаем ее так, чтобы она могла спрогнозировать значение целевой переменной Y для новых данных (неразмеченных).
🔗 Нейросеть для классификации спутниковых снимков с помощью Tensorflow на Python
Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для...
Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для решения сложных проблем, в том числе геопространственных. Надеюсь, вы знакомы с датасетами спутниковых снимков, в частности, Landsat 5 TM. Если вы немного разбираетесь в работе алгоритмов машинного обучения, то это поможет вам быстро освоить это руководство. А для тех, кто не разбирается, будет достаточным знать, что, по сути, машинное обучение заключается в установлении взаимосвязей между несколькими характеристиками (набором признаков Х) объекта с другим его свойством (значением или меткой, — целевой переменной Y). Мы подаём на вход модели много объектов, для которых известны признаки и значение целевого показателя/класса объекта (размеченные данные) и обучаем ее так, чтобы она могла спрогнозировать значение целевой переменной Y для новых данных (неразмеченных).
🔗 Нейросеть для классификации спутниковых снимков с помощью Tensorflow на Python
Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для...
Хабр
Нейросеть для классификации спутниковых снимков с помощью Tensorflow на Python
Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для решения сложных проблем, в том числе...
Quick Install Guide: Nvidia RAPIDS + BlazingSQL on AWS SageMaker
🔗 Quick Install Guide: Nvidia RAPIDS + BlazingSQL on AWS SageMaker
RAPIDS was announced on October 10th 2018 and since then the folks in Nvidia have worked day and night to add an impresive number of…
🔗 Quick Install Guide: Nvidia RAPIDS + BlazingSQL on AWS SageMaker
RAPIDS was announced on October 10th 2018 and since then the folks in Nvidia have worked day and night to add an impresive number of…
Medium
Quick Install Guide: Nvidia RAPIDS + BlazingSQL on AWS SageMaker
RAPIDS was announced on October 10th 2018 and since then the folks in Nvidia have worked day and night to add an impresive number of…
Fast Sample Efficient Q-Learning With Recurrent IQN
🔗 Fast Sample Efficient Q-Learning With Recurrent IQN
Overview In this article I propose and evaluate a ‘Recurrent IQN’ training algorithm, with the goal of scalable and sample-efficient learning for discrete action spaces. The algorithm combines the sample-efficient IQN algorithm with features from Rainbow and R2D2, potentially exceeding the current (sample-efficient) state-of-the-art on the Atari-57 benchmark by up to 50%. Full codebase is available here. Any constructive feedback is more than welcome.
🔗 Fast Sample Efficient Q-Learning With Recurrent IQN
Overview In this article I propose and evaluate a ‘Recurrent IQN’ training algorithm, with the goal of scalable and sample-efficient learning for discrete action spaces. The algorithm combines the sample-efficient IQN algorithm with features from Rainbow and R2D2, potentially exceeding the current (sample-efficient) state-of-the-art on the Atari-57 benchmark by up to 50%. Full codebase is available here. Any constructive feedback is more than welcome.
Reinforcement Learning for Games
Fast Sample Efficient Q-Learning With Recurrent IQN
Overview In this article I propose and evaluate a ‘Recurrent IQN’ training algorithm, with the goal of scalable and sample-efficient learning for discrete action spaces. The algorithm combines the sample-efficient IQN algorithm with features from Rainbow…
Accessible AutoML for deep learning
https://github.com/keras-team/autokeras
🔗 keras-team/autokeras
Accessible AutoML for deep learning. Contribute to keras-team/autokeras development by creating an account on GitHub.
https://github.com/keras-team/autokeras
🔗 keras-team/autokeras
Accessible AutoML for deep learning. Contribute to keras-team/autokeras development by creating an account on GitHub.
GitHub
GitHub - keras-team/autokeras: AutoML library for deep learning
AutoML library for deep learning. Contribute to keras-team/autokeras development by creating an account on GitHub.
Finding GPU Deep Learning Love in Gamer Hate
🔗 Finding GPU Deep Learning Love in Gamer Hate
A primer on taking advantage of gamer sentiment and Moore’s Law to land a low cost, low friction, low profile machine learning setup
🔗 Finding GPU Deep Learning Love in Gamer Hate
A primer on taking advantage of gamer sentiment and Moore’s Law to land a low cost, low friction, low profile machine learning setup
Medium
Finding GPU Deep Learning Love in Gamer Hate
A primer on taking advantage of gamer sentiment and Moore’s Law to land a low cost, low friction, low profile machine learning setup
A Gentle Introduction to Joint, Marginal, and Conditional Probability
https://machinelearningmastery.com/joint-marginal-and-conditional-probability-for-machine-learning/
🔗 A Gentle Introduction to Joint, Marginal, and Conditional Probability
Probability quantifies the uncertainty of the outcomes of a random variable. It is relatively easy to understand and compute the probability for a single variable. Nevertheless, in machine learning, we often have many random variables that interact in often complex and unknown ways. There are specific techniques that can be used to quantify the probability …
https://machinelearningmastery.com/joint-marginal-and-conditional-probability-for-machine-learning/
🔗 A Gentle Introduction to Joint, Marginal, and Conditional Probability
Probability quantifies the uncertainty of the outcomes of a random variable. It is relatively easy to understand and compute the probability for a single variable. Nevertheless, in machine learning, we often have many random variables that interact in often complex and unknown ways. There are specific techniques that can be used to quantify the probability …
MachineLearningMastery.com
A Gentle Introduction to Joint, Marginal, and Conditional Probability - MachineLearningMastery.com
Probability quantifies the uncertainty of the outcomes of a random variable. It is relatively easy to understand and compute the probability for a single variable. Nevertheless, in machine learning, we often have many random variables that interact in often…
🎥 Training Model - Deep Learning and Neural Networks with Python and Pytorch p.4
👁 2 раз ⏳ 1856 сек.
👁 2 раз ⏳ 1856 сек.
In this deep learning with Python and Pytorch tutorial, we'll be actually training this neural network by learning how to iterate over our data, pass to the model, calculate loss from the result, and then do backpropagation to slowly fit our model to the data.
Text-based tutorials and sample code: https://pythonprogramming.net/training-deep-learning-neural-network-pytorch/
Linode Cloud GPUs $20 credit: https://linode.com/sentdex
Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQVk
Training Model - Deep Learning and Neural Networks with Python and Pytorch p.4
In this deep learning with Python and Pytorch tutorial, we'll be actually training this neural network by learning how to iterate over our data, pass to the model, calculate loss from the result, and then do backpropagation to slowly fit our model to the…
DCTD: Deep Conditional Target Densities for Accurate Regression
Authors: Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, Thomas B. Schön
Abstract: While deep learning-based classification is generally addressed using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach has demonstrated impressive results, it requires important task-dependent design choices, and the predicted confidences often lack a natural probabilistic meaning. We address these issues by proposing
https://arxiv.org/abs/1909.12297
🔗 DCTD: Deep Conditional Target Densities for Accurate Regression
While deep learning-based classification is generally addressed using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach has demonstrated impressive results, it requires important task-dependent design choices, and the predicted confidences often lack a natural probabilistic meaning. We address these issues by proposing Deep Conditional Target Densities (DCTD), a novel and general regression method with a clear probabilistic interpretation. DCTD models the conditional target density p(y|x) by using a neural network to directly predict the un-normalized density from (x, y). This model of p(y|x) is trained by minimizing the associated negative log-likelihood, approximated using Monte Carlo sampling. We perform comprehensive experiments on four computer vision regression tasks. Our app
Authors: Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, Thomas B. Schön
Abstract: While deep learning-based classification is generally addressed using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach has demonstrated impressive results, it requires important task-dependent design choices, and the predicted confidences often lack a natural probabilistic meaning. We address these issues by proposing
https://arxiv.org/abs/1909.12297
🔗 DCTD: Deep Conditional Target Densities for Accurate Regression
While deep learning-based classification is generally addressed using standardized approaches, a wide variety of techniques are employed for regression. In computer vision, one particularly popular such technique is that of confidence-based regression, which entails predicting a confidence value for each input-target pair (x, y). While this approach has demonstrated impressive results, it requires important task-dependent design choices, and the predicted confidences often lack a natural probabilistic meaning. We address these issues by proposing Deep Conditional Target Densities (DCTD), a novel and general regression method with a clear probabilistic interpretation. DCTD models the conditional target density p(y|x) by using a neural network to directly predict the un-normalized density from (x, y). This model of p(y|x) is trained by minimizing the associated negative log-likelihood, approximated using Monte Carlo sampling. We perform comprehensive experiments on four computer vision regression tasks. Our app
Trueface Tutorials: Convert MXNet Models into High-Performance Inference Frameworks
🔗 Trueface Tutorials: Convert MXNet Models into High-Performance Inference Frameworks
MXNet is a great framework when it comes to prototyping and training models. Developed by The Apache Software Foundation, MXNet offers a…
🔗 Trueface Tutorials: Convert MXNet Models into High-Performance Inference Frameworks
MXNet is a great framework when it comes to prototyping and training models. Developed by The Apache Software Foundation, MXNet offers a…
Medium
Trueface Tutorials: Convert MXNet Models into High-Performance Inference Frameworks
MXNet is a great framework when it comes to prototyping and training models. Developed by The Apache Software Foundation, MXNet offers a…
Ai: Where To Begin?
🔗 Ai: Where To Begin?
Organizations widely recognize the potential power of artificial intelligence (Ai). They instinctively understand that it feels like we’re…
🔗 Ai: Where To Begin?
Organizations widely recognize the potential power of artificial intelligence (Ai). They instinctively understand that it feels like we’re…
Medium
Ai: Where To Begin?
Organizations widely recognize the potential power of artificial intelligence (Ai). They instinctively understand that it feels like we’re…
Optimising a Machine Learning Model with the Confusion Matrix
🔗 Optimising a Machine Learning Model with the Confusion Matrix
How to tune a classifier dependant on your use case, including a walk through in python
🔗 Optimising a Machine Learning Model with the Confusion Matrix
How to tune a classifier dependant on your use case, including a walk through in python
Medium
Optimising a Machine Learning Model with the Confusion Matrix
How to tune a classifier dependant on your use case, including a walk through in python
Objects Counting by Estimating a Density Map With Convolutional Neural Networks
🔗 Objects Counting by Estimating a Density Map With Convolutional Neural Networks
Written by Tomasz Bonus and Tomasz Golan.
🔗 Objects Counting by Estimating a Density Map With Convolutional Neural Networks
Written by Tomasz Bonus and Tomasz Golan.
Medium
Objects Counting by Estimating a Density Map With Convolutional Neural Networks
Written by Tomasz Bonus and Tomasz Golan.
Hey, Can (A)I Get Your Number?
🔗 Hey, Can (A)I Get Your Number?
Using CNNs to help love flourish in the 21st century
🔗 Hey, Can (A)I Get Your Number?
Using CNNs to help love flourish in the 21st century
Medium
Hey, Can (A)I Get Your Number?
Using CNNs to help love flourish in the 21st century
Искусственный интеллект простыми словами
✅Как учатся машины | Искусственный интеллект
✅Искусственный интеллект и машинное обучение
✅Искусственный интеллект и нейронные сети
✅Искусственный интеллект в юриспруденции
✅Искусственный интеллект в филологии и журналистике
✅Искусственный интеллект в сельском хозяйстве
✅Искусственный интеллект в бизнесе и финансах
✅Искусственный интеллект в медицине и биологии
✅Искусственный интеллект в педагогике и психологии
#video #ai
🎥 Как учатся машины | Искусственный интеллект
👁 40 раз ⏳ 483 сек.
🎥 Искусственный интеллект и машинное обучение
👁 12 раз ⏳ 718 сек.
🎥 Искусственный интеллект и нейронные сети
👁 5 раз ⏳ 686 сек.
🎥 Искусственный интеллект в юриспруденции
👁 9 раз ⏳ 378 сек.
🎥 Искусственный интеллект в филологии и журналистике
👁 1 раз ⏳ 308 сек.
🎥 Искусственный интеллект в сельском хозяйстве
👁 4 раз ⏳ 188 сек.
🎥 Искусственный интеллект в бизнесе и финансах
👁 1 раз ⏳ 248 сек.
🎥 Искусственный интеллект в медицине и биологии
👁 6 раз ⏳ 146 сек.
🎥 Искусственный интеллект в педагогике и психологии
👁 6 раз ⏳ 173 сек.
✅Как учатся машины | Искусственный интеллект
✅Искусственный интеллект и машинное обучение
✅Искусственный интеллект и нейронные сети
✅Искусственный интеллект в юриспруденции
✅Искусственный интеллект в филологии и журналистике
✅Искусственный интеллект в сельском хозяйстве
✅Искусственный интеллект в бизнесе и финансах
✅Искусственный интеллект в медицине и биологии
✅Искусственный интеллект в педагогике и психологии
#video #ai
🎥 Как учатся машины | Искусственный интеллект
👁 40 раз ⏳ 483 сек.
Искусственный интеллект простыми словами🎥 Искусственный интеллект и машинное обучение
👁 12 раз ⏳ 718 сек.
Про машинное обучение простыми словами🎥 Искусственный интеллект и нейронные сети
👁 5 раз ⏳ 686 сек.
Про нейронные сети простыми словами🎥 Искусственный интеллект в юриспруденции
👁 9 раз ⏳ 378 сек.
Примеры использования искусственного интеллекта в юриспруденции🎥 Искусственный интеллект в филологии и журналистике
👁 1 раз ⏳ 308 сек.
Примеры использования искусственного интеллекта в журналистике и филологии🎥 Искусственный интеллект в сельском хозяйстве
👁 4 раз ⏳ 188 сек.
Примеры использования искусственного интеллекта в сельском хозяйстве🎥 Искусственный интеллект в бизнесе и финансах
👁 1 раз ⏳ 248 сек.
Примеры использования искусственного интеллекта в бизнесе и финансах🎥 Искусственный интеллект в медицине и биологии
👁 6 раз ⏳ 146 сек.
Примеры использования искусственного интеллекта в медицине и биологии🎥 Искусственный интеллект в педагогике и психологии
👁 6 раз ⏳ 173 сек.
Примеры использования искусственного интеллекта в педагогике и психологииПогружение в свёрточные нейронные сети: передача обучения (transfer learning)
Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.
🔗 Погружение в свёрточные нейронные сети: передача обучения (transfer learning)
Полный курс на русском языке можно найти по этой ссылке. Оригинальный курс на английском доступен по этой ссылке. Содержание Интервью с Себастьяном Труном Введ...
Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.
🔗 Погружение в свёрточные нейронные сети: передача обучения (transfer learning)
Полный курс на русском языке можно найти по этой ссылке. Оригинальный курс на английском доступен по этой ссылке. Содержание Интервью с Себастьяном Труном Введ...
Хабр
Погружение в свёрточные нейронные сети: передача обучения (transfer learning)
Полный курс на русском языке можно найти по этой ссылке. Оригинальный курс на английском доступен по этой ссылке. Содержание Интервью с Себастьяном Труном Введение Передача модели обучения...
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Lan et al. Google
arxiv.org/abs/1909.11942
🔗 ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.
Lan et al. Google
arxiv.org/abs/1909.11942
🔗 ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.
arXiv.org
ALBERT: A Lite BERT for Self-supervised Learning of Language...
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due...
Power BI as a Tool for Business Intelligence
🔗 Power BI as a Tool for Business Intelligence
An article about the advantages of Power BI as a tool for BI.
🔗 Power BI as a Tool for Business Intelligence
An article about the advantages of Power BI as a tool for BI.
Medium
Power BI as a Tool for Business Intelligence
An article about the advantages of Power BI as a tool for BI.
DeepMind Measures 7 Capabilities Every AI Should Have
video: https://www.youtube.com/watch?v=zrF5_O92ELQ
📝 The paper "Behaviour Suite for Reinforcement Learning"
https://arxiv.org/abs/1908.03568
code https://github.com/deepmind/bsuite
🎥 DeepMind Measures 7 Capabilities Every AI Should Have
👁 1 раз ⏳ 242 сек.
video: https://www.youtube.com/watch?v=zrF5_O92ELQ
📝 The paper "Behaviour Suite for Reinforcement Learning"
https://arxiv.org/abs/1908.03568
code https://github.com/deepmind/bsuite
🎥 DeepMind Measures 7 Capabilities Every AI Should Have
👁 1 раз ⏳ 242 сек.
❤️ Thank you so much for your support on Patreon: https://www.patreon.com/TwoMinutePapers
📝 The paper "Behaviour Suite for Reinforcement Learning" is available here:
https://arxiv.org/abs/1908.03568
https://github.com/deepmind/bsuite
🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bruno Brito, Bryan Learn, Christian Ahlin, Christoph Jadanowski, Claudio Fernandes, Daniel HasegaYouTube
These Are The 7 Capabilities Every AI Should Have
❤️ Thank you so much for your support on Patreon: https://www.patreon.com/TwoMinutePapers
📝 The paper "Behaviour Suite for Reinforcement Learning" is available here:
https://arxiv.org/abs/1908.03568
https://github.com/deepmind/bsuite
🙏 We would like to…
📝 The paper "Behaviour Suite for Reinforcement Learning" is available here:
https://arxiv.org/abs/1908.03568
https://github.com/deepmind/bsuite
🙏 We would like to…