Guess The Continent — A Naive Bayes Classifier With Scikit-Learn
🔗 Guess The Continent — A Naive Bayes Classifier With Scikit-Learn
Implementing categorisation with the simple Naive Bayes Classifier
🔗 Guess The Continent — A Naive Bayes Classifier With Scikit-Learn
Implementing categorisation with the simple Naive Bayes Classifier
Medium
Guess The Continent — A Naive Bayes Classifier With Scikit-Learn
Implementing categorisation with the simple Naive Bayes Classifier
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review http://arxiv.org/abs/1909.08072
🔗 Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples raises our concerns in adopting deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for three most popular data types, including images, graphs and text.
🔗 Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples raises our concerns in adopting deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for three most popular data types, including images, graphs and text.
Reinforcement Learning — Policy Approximation
🔗 Reinforcement Learning — Policy Approximation
Theory and Application of Policy Gradient Method
🔗 Reinforcement Learning — Policy Approximation
Theory and Application of Policy Gradient Method
Medium
Reinforcement Learning — Policy Approximation
Theory and Application of Policy Gradient Method
Not 1, not 2…but 5 ways to Correlate
🔗 Not 1, not 2…but 5 ways to Correlate
A wide varieties of algorithms to find correlations
🔗 Not 1, not 2…but 5 ways to Correlate
A wide varieties of algorithms to find correlations
Medium
Not 1, not 2…but 5 ways to Correlate
A wide varieties of algorithms to find correlations
Natural Language Processing With spaCy in Python – Real Python
🔗 Natural Language Processing With spaCy in Python – Real Python
In this step-by-step tutorial, you'll learn how to use spaCy. This free and open-source library for Natural Language Processing (NLP) in Python has a lot of built-in capabilities and is becoming increasingly popular for processing and analyzing data in NLP.
🔗 Natural Language Processing With spaCy in Python – Real Python
In this step-by-step tutorial, you'll learn how to use spaCy. This free and open-source library for Natural Language Processing (NLP) in Python has a lot of built-in capabilities and is becoming increasingly popular for processing and analyzing data in NLP.
Realpython
Natural Language Processing With spaCy in Python – Real Python
In this step-by-step tutorial, you'll learn how to use spaCy. This free and open-source library for natural language processing (NLP) in Python has a lot of built-in capabilities and is becoming increasingly popular for processing and analyzing data in NLP.
🎥 What is ImageNet?
👁 1 раз ⏳ 516 сек.
👁 1 раз ⏳ 516 сек.
ImageNet is an open source repository of images consisting of 1000 classes and over 1.5 million images
ImageNet is used for benchmarking computer vision and deep learning algorithms.
Check This out: http://www.image-net.org/ and search for ‘elephant’!
Subscribe to my channel to get the latest updates, we will be releasing new videos on weekly basis:
https://www.youtube.com/channel/UC76VWNgXnU6z0RSPGwSkNIg?view_as=subscriber
Thanks and happy learning!Vk
What is ImageNet?
ImageNet is an open source repository of images consisting of 1000 classes and over 1.5 million images
ImageNet is used for benchmarking computer vision and deep learning algorithms.
Check This out: http://www.image-net.org/ and search for ‘elephant’!…
ImageNet is used for benchmarking computer vision and deep learning algorithms.
Check This out: http://www.image-net.org/ and search for ‘elephant’!…
🎥 Machine Learning Full Course - Learn Machine Learning 10 Hours | Machine Learning Tutorial | Edureka
👁 4 раз ⏳ 34712 сек.
👁 4 раз ⏳ 34712 сек.
** Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training **
This Edureka Machine Learning Full Course video will help you understand and learn Machine Learning Algorithms in detail. This Machine Learning Tutorial is ideal for both beginners as well as professionals who want to master Machine Learning Algorithms. Below are the topics covered in this Machine LearningTutorial for Beginners video:
2:47 What is Machine Learning?
4:08 AI vs ML vs DeepVk
Machine Learning Full Course - Learn Machine Learning 10 Hours | Machine Learning Tutorial | Edureka
** Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training **
This Edureka Machine Learning Full Course video will help you understand and learn Machine Learning Algorithms in detail. This Machine…
This Edureka Machine Learning Full Course video will help you understand and learn Machine Learning Algorithms in detail. This Machine…
🎥 2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
👁 1 раз ⏳ 2781 сек.
👁 1 раз ⏳ 2781 сек.
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeekVk
2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
How to Deploy Your Machine Learning Web App to Digital Ocean
🔗 How to Deploy Your Machine Learning Web App to Digital Ocean
Using Fast.ai, Docker, GitHub, and Starlette ASGI Framework
🔗 How to Deploy Your Machine Learning Web App to Digital Ocean
Using Fast.ai, Docker, GitHub, and Starlette ASGI Framework
Medium
How to Deploy Your Machine Learning Web App to Digital Ocean
Using Fast.ai, Docker, GitHub, and Starlette ASGI Framework
Understanding Stochastic Gradient Descent in a Different Perspective
🔗 Understanding Stochastic Gradient Descent in a Different Perspective
The stochastic optimization [1] is a prevalent approach when training a neural network. And based on that, there are methods like SGD with…
🔗 Understanding Stochastic Gradient Descent in a Different Perspective
The stochastic optimization [1] is a prevalent approach when training a neural network. And based on that, there are methods like SGD with…
Medium
Understanding Stochastic Gradient Descent in a Different Perspective
The stochastic optimization [1] is a prevalent approach when training a neural network. And based on that, there are methods like SGD with…
Feature Selection: Beyond feature importance?
🔗 Feature Selection: Beyond feature importance?
In machine learning, Feature Selection is the process of choosing features that are most useful for your prediction. Although it sounds…
🔗 Feature Selection: Beyond feature importance?
In machine learning, Feature Selection is the process of choosing features that are most useful for your prediction. Although it sounds…
Medium
Feature Selection: Beyond feature importance?
In machine learning, Feature Selection is the process of choosing features that are most useful for your prediction. Although it sounds…
Easy Filters - Intro to GPU Pixel Shaders
🔗 Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
🔗 Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
Medium
Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википедии дано замечательное определение ИИ — это «свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека». То есть из определения явно видно — если некую функцию успешно удалось автоматизировать, то она перестаёт считаться искусственным интеллектом.
Тем не менее, когда задача «создать искусственный интеллект» была поставлена впервые, под ИИ подразумевалось нечто иное. Сейчас эта цель называется «Сильный ИИ» или «ИИ общего назначения».
🔗 Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википедии дано замечательное определение ИИ — это «свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека». То есть из определения явно видно — если некую функцию успешно удалось автоматизировать, то она перестаёт считаться искусственным интеллектом.
Тем не менее, когда задача «создать искусственный интеллект» была поставлена впервые, под ИИ подразумевалось нечто иное. Сейчас эта цель называется «Сильный ИИ» или «ИИ общего назначения».
🔗 Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
Хабр
Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
🔗 Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
🔗 Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
Medium
Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
🎥 2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
👁 1 раз ⏳ 2781 сек.
👁 1 раз ⏳ 2781 сек.
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeekVk
2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
Understanding probability. Finally!
🔗 Understanding probability. Finally!
Practical guide to probability concepts for data scientists
🔗 Understanding probability. Finally!
Practical guide to probability concepts for data scientists
Medium
Understanding probability. Finally!
Practical guide to probability concepts for data scientists
Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет!
Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.
Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список.
Книги по анализу данных, математике, data science и machine learning:
🔗 Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет! Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они б...
Хабр, привет!
Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.
Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список.
Книги по анализу данных, математике, data science и machine learning:
🔗 Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет! Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они б...
Good resources for machine learning mathematics with lecture notes on machine learning mathematics such as Probability, Statistics, Algebra, Number Theory, Geometry etc. All in one for ML mathematics
https://github.com/Niraj-Lunavat/Maths-for-Artificial-Intelligence
🔗 Niraj-Lunavat/Maths-for-Artificial-Intelligence
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - Niraj-Lunavat/Maths-for-Artificial-Intelligence
https://github.com/Niraj-Lunavat/Maths-for-Artificial-Intelligence
🔗 Niraj-Lunavat/Maths-for-Artificial-Intelligence
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - Niraj-Lunavat/Maths-for-Artificial-Intelligence
GitHub
GitHub - Niraj-Lunavat/Maths-for-Artificial-Intelligence: Master mathematics for machine learning, Artificial Intelligence. A curated…
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - GitHub - Niraj-Lunavat/Maths-for-Artificial-Intelligence: Master mathematics fo...
Santosh-Gupta/SpeedTorch
https://github.com/Santosh-Gupta/SpeedTorch/
🔗 Santosh-Gupta/SpeedTorch
Library for faster pinned CPU ?-? GPU transfer in Pytorch - Santosh-Gupta/SpeedTorch
https://github.com/Santosh-Gupta/SpeedTorch/
🔗 Santosh-Gupta/SpeedTorch
Library for faster pinned CPU ?-? GPU transfer in Pytorch - Santosh-Gupta/SpeedTorch
GitHub
GitHub - Santosh-Gupta/SpeedTorch: Library for faster pinned CPU <-> GPU transfer in Pytorch
Library for faster pinned CPU <-> GPU transfer in Pytorch - GitHub - Santosh-Gupta/SpeedTorch: Library for faster pinned CPU <-> GPU transfer in Pytorch