Neural Networks | Нейронные сети
11.6K subscribers
802 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Логика нейронных сетей
В этом посте я хочу рассказать о «логике» нейросетей. Я надеюсь, это поможет начинающим лучше понять, что могут нейронные сети. Для этого мы попробуем посмотреть, как они справляются с некоторыми модельными задачами. Примеры кода будут приводиться на python
с использованием библиотеки keras.

Задача 1. Начнём с простого. Построим нейронную сеть, аппроксимирующую синус.

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense

def get_X_y(n):
X = np.random.uniform(0, np.pi, n)
y = np.sin(X)
return X, y

n = 40
X, y = get_X_y(n)
print("X shape:", X.shape)

model = Sequential()
model.add(Dense(6, input_dim=1, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_squared_error'])

model.fit(X, y, epochs=1000, batch_size=4)

X_test = np.linspace(start=0, stop=np.pi, num=500)
print("X test shape:", X_test.shape)
y_test = model.predict(X_test)

font = {'weight': 'bold',
'size': 25}

matplotlib.rc('font', **font)
axes = plt.gca()
axes.set_ylim(0, 1)
plt.plot(X_test, y_test, c='green', marker='o', markersize=5)
plt.title("Sinus approximated by neural network")
plt.yticks(np.arange(0, 1, 0.1))
plt.grid()
plt.show()

Получаем следующй график:

Как видим, нейронная сеть успешно справилась с задачей аппроксимации несложной функции.

🔗 Логика нейронных сетей
В этом посте я хочу рассказать о «логике» нейросетей. Я надеюсь, это поможет начинающим лучше понять, что могут нейронные сети. Для этого мы попробуем посмотреть...
🎥 Kaggle iMaterialist (Fashion) 2019 at FGVC6 — Илья Денисов
👁 1 раз 1180 сек.
Илья Денисов рассказывает про опыт участия в соревновании Kaggle iMaterialist (Fashion) 2019 at FGVC6, в котором он выиграл золотую медаль.

Из этого видео вы сможете узнать:
- Как детальное изучение метрики дает улучшение на лидерборде
- Как особенности в данных могут помешать хорошо обучить модель
- Как выбор неправильного метода интерполяции может занижать результаты вашей сети

Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/

Узнать о новых тренировках и видео можно из групп:
ВКонт
​Kaggle Reading Group: Weight Agnostic Neural Networks (Part 2) | Kaggle

🔗 Kaggle Reading Group: Weight Agnostic Neural Networks (Part 2) | Kaggle
Today we're continuing with the paper "Weight Agnostic Neural Networks" by Gaier & Ha from NeurIPS 2019. Link to paper: https://arxiv.org/pdf/1906.04358.pdf SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build with our huge repo
​Ihmehimmeli
This repository contains code for project Ihmehimmeli. The model is described in the paper:

I.M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, J. Alakuijala (2019). “Temporal coding in spiking neural networks with alpha synaptic function”, arXiv:1907.13223, July 2019

https://github.com/google/ihmehimmeli

🔗 google/ihmehimmeli
Contribute to google/ihmehimmeli development by creating an account on GitHub.
​Project Ihmehimmeli: Temporal Coding in Spiking Neural Networks

http://ai.googleblog.com/2019/09/project-ihmehimmeli-temporal-coding-in.html

🔗 Project Ihmehimmeli: Temporal Coding in Spiking Neural Networks
Posted by Iulia-Maria Comșa and Krzysztof Potempa, Research Engineers, Google Research, Zürich The discoveries being made regularly in n...
​История одного гипотетического робота

В прошлой статье я неосторожно анонсировал вторую часть, тем более что материал уже казалось был и даже частично оформленный. Но все оказалось несколько сложнее, чем на первый взгляд. Частично этому поспособствовали дискуссии в комментариях, частично — не достаточная внятность изложения мыслей, которые мне самому кажутся чертовски важными… Можно сказать, что пока материал не пропускает мой внутренний критик! )

Однако, для этого «опуса» он сделал исключение. Так как текст в общем-то чисто художественный, он ни к чему не обязывает. Однако, думаю на его основе можно будет сделать некие полезные умозаключения. Это как бы формат притчи: поучительной истории, не обязательно произошедшей на самом деле, которая заставляет задуматься. Ну… Должен заставлять. ;) Если притча хорошая!

Итак…

🔗 История одного гипотетического робота
В прошлой статье я неосторожно анонсировал вторую часть, тем более что материал уже казалось был и даже частично оформленный. Но все оказалось несколько сложнее...
​Kaggle Predicting Molecular Properties — Andrew Lukyanenko

🔗 Kaggle Predicting Molecular Properties — Andrew Lukyanenko
Andrew Lukyanenko tells about his participation in Kaggle Predicting Molecular Properties competition in English. His team won a gold medal. In this video you will find out: - Information about Predicting Molecular Properties competition and approaches of top teams - Architectures of graph neural nets which can be used to work with chemical molecules - Tips to improve score in this competition and some lessons learned from taking part in it Find out about new competitions http://mltrainings.ru/ Find out
​Законопроект о создании единой базы с данными граждан приняли в ГосДуме в первом чтении
Собственно, суть новости в заголовке, а подробности описаны тут и тут.

А от себя хочу прокомментировать эту новость.

Думаю, многие мечтали избавиться от поиска миллиона справок и доказательств, что у тебя и правда есть (или нет) недвижимость, машина и работа. Цифровая трансформация должна сделать эту мечту реальностью, в которой подтверждение любого факта можно будет найти без написания официальных запросов и листков бумаги.

Кроме того, наличие большого объема данных открывает возможности использования механизмов статистики, машинного обучения для выявления тенденций в развитии общества, улучшения сервисов.

Мы в сотрудничестве с Агентством стратегических инициатив в рамках Национальной технологической инициативы создаем платформу талантов, собирающую информацию о достижениях школьников, для построения индивидуальных образовательных траекторий и рекомендаций вузам. Например, чтобы понимать, какое место и в каких олимпиадах действительно важно для успешного обучения. И уже на этом этапе увидели много возможностей для индивидуализации образования, например, создание системы по разным направлениям деятельности.

🔗 Законопроект о создании единой базы с данными граждан приняли в ГосДуме в первом чтении
Собственно, суть новости в заголовке, а подробности описаны тут и тут. А от себя хочу прокомментировать эту новость. Думаю, многие мечтали избавиться от поиска...
​Как создать модель точнее transfermarkt и не предсказывать или что больше всего влияет на стоимость трансферов
Я постараюсь рассказать вам насколько легко получить интересные результаты, просто применив совершенно стандартный подход из тьюториала курса по машинному обучению к не самым используемым в Deep Learning данным. Суть моего поста в том, это может каждый из нас, надо просто посмотреть на тот массив информации, который вы хорошо знаете. Для этого, фактически, гораздо важнее просто хорошо понимать свои данные, чем быть экспертом в новейших структурах нейросетей. То есть, на мой взгляд, мы находимся в той золотой точке развития DL, когда с одной стороны это уже инструмент, которым можно пользоваться без необходимости быть PhD, а с другой — еще полно областей, где его просто особо никто не применял, если посмотреть чуть дальше традиционных тем.

🔗 Как создать модель точнее transfermarkt и не предсказывать или что больше всего влияет на стоимость трансферов
Я постараюсь рассказать вам насколько легко получить интересные результаты, просто применив совершенно стандартный подход из тьюториала курса по машинному обучен...
🎥 Applying Research Driven Tactics for Deeper Learning Experiences With Patti Shank - IDIODC Ep#72
👁 1 раз 2735 сек.
Instructional Designers In Offices Drinking Coffee

Sept. 18, 2019 - Applying Research Driven Tactics for Deeper Learning Experiences With Patti Shank

New to IDIODC? What is IDIODC all about? Well, it's pretty simple. IDIODC, short for: Instructional Designers In Offices Drinking Coffee, is a weekly, live video and podcast used to help ID's with pain points and provide best practices and insight. Every Wednesday morning at 9am ET, the upbeat and candid conversation encourages peers to participate in the ch