30 Helpful Python Snippets That You Can Learn in 30 Seconds or Less
https://towardsdatascience.com/30-helpful-python-snippets-that-you-can-learn-in-30-seconds-or-less-69bb49204172
🔗 30 Helpful Python Snippets That You Can Learn in 30 Seconds or Less
Short Python snippets that you can quickly learn and use in your work or personal needs
https://towardsdatascience.com/30-helpful-python-snippets-that-you-can-learn-in-30-seconds-or-less-69bb49204172
🔗 30 Helpful Python Snippets That You Can Learn in 30 Seconds or Less
Short Python snippets that you can quickly learn and use in your work or personal needs
Medium
30 Helpful Python Snippets That You Can Learn in 30 Seconds or Less
Short Python snippets that you can quickly learn and use in your work or personal needs
🎥 Python Voice Assistant Tutorial #8 - Opening Programs/Applications
👁 1 раз ⏳ 570 сек.
👁 1 раз ⏳ 570 сек.
In this python voice assistant tutorial I will be showing how to open programs from python code. Specifically we will open the program/application notepad and save a note that the user has instructed us to write down.
Text-Based Tutorial: Coming Soon...
*****
Enroll in The Fundamentals of Programming w/ Python
https://tech-with-tim.teachable.com/p/the-fundamentals-of-programming-with-python
Instagram: https://www.instagram.com/tech_with_tim
Website https://techwithtim.net
Twitter: https://twitter.com/TeVk
Python Voice Assistant Tutorial #8 - Opening Programs/Applications
In this python voice assistant tutorial I will be showing how to open programs from python code. Specifically we will open the program/application notepad and save a note that the user has instructed us to write down.
Text-Based Tutorial: Coming Soon...…
Text-Based Tutorial: Coming Soon...…
Automating Machine Learning Models on AWS
🔗 Automating Machine Learning Models on AWS
Using AWS Lambda, S3 and EC2
🔗 Automating Machine Learning Models on AWS
Using AWS Lambda, S3 and EC2
Medium
Automating Machine Learning Models on AWS
Using AWS Lambda, S3 and EC2
Deep Learning: Predicting Skin Cancer
🔗 Deep Learning: Predicting Skin Cancer
Build a Convolutional Neural Network using Keras on Python to recognize benign/malignant melanoma cells.
🔗 Deep Learning: Predicting Skin Cancer
Build a Convolutional Neural Network using Keras on Python to recognize benign/malignant melanoma cells.
Medium
Deep Learning: Predicting Skin Cancer
Build a Convolutional Neural Network using Keras on Python to recognize benign/malignant melanoma cells.
Geocode with Python
🔗 Geocode with Python
How to Convert physical addresses to Geographic locations → Latitude and Longitude
🔗 Geocode with Python
How to Convert physical addresses to Geographic locations → Latitude and Longitude
Medium
Geocode with Python
How to Convert physical addresses to Geographic locations → Latitude and Longitude
Getting Started With Bounding Box Regression In TensorFlow
🔗 Getting Started With Bounding Box Regression In TensorFlow
Bounding box regression could be your first wonderful step in the world of object detection.
🔗 Getting Started With Bounding Box Regression In TensorFlow
Bounding box regression could be your first wonderful step in the world of object detection.
Medium
Getting Started With Bounding Box Regression In TensorFlow
Bounding box regression could be your first wonderful step in the world of object detection.
🎥 PASS SUMMIT 2016 - Using Azure Machine Learning to Predict Consumer Price Index
👁 1 раз ⏳ 4094 сек.
👁 1 раз ⏳ 4094 сек.
Inflation is one of the economic phenomena that receive particular attention from public policy actors, because of its effects on the allocation of resources, the distribution of income, economic development, and on the wellbeing of societies. Therefore, having an early and reliable vision of inflation enables defining appropriate anti-inflationary policies to achieve stability in the purchasing power of currencies.
Through leveraging Azure+PowerBI resources for data scraping, analytics, and visualization,Vk
PASS SUMMIT 2016 - Using Azure Machine Learning to Predict Consumer Price Index
Inflation is one of the economic phenomena that receive particular attention from public policy actors, because of its effects on the allocation of resources, the distribution of income, economic development, and on the wellbeing of societies. Therefore,…
The largest publicly available language model: CTRL has 1.6B parameters and can be guided by control codes for style, content, and task-specific behavior.
code: https://github.com/salesforce/ctrl
article: https://einstein.ai/presentations/ctrl.pdf
https://blog.einstein.ai/introducing-a-conditional-transformer-language-model-for-controllable-generation/
🔗 salesforce/ctrl
Conditional Transformer Language Model for Controllable Generation (https://einstein.ai/presentations/ctrl.pdf) - salesforce/ctrl
code: https://github.com/salesforce/ctrl
article: https://einstein.ai/presentations/ctrl.pdf
https://blog.einstein.ai/introducing-a-conditional-transformer-language-model-for-controllable-generation/
🔗 salesforce/ctrl
Conditional Transformer Language Model for Controllable Generation (https://einstein.ai/presentations/ctrl.pdf) - salesforce/ctrl
GitHub
GitHub - salesforce/ctrl: Conditional Transformer Language Model for Controllable Generation
Conditional Transformer Language Model for Controllable Generation - salesforce/ctrl
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке
Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN / LSTM (Рекуррентные нейронные сети RNN (Recurrent Neural Networks) / Долгая краткосрочная память (Long short-term memory; LSTM) ). Появился новый алгоритм, называемый Calibrated Quantum Mesh (CQM), который обещает повысить точность поиска на естественном языке без использования размеченных данных обучения.
https://habr.com/ru/post/467529/
🔗 CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN /...
Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN / LSTM (Рекуррентные нейронные сети RNN (Recurrent Neural Networks) / Долгая краткосрочная память (Long short-term memory; LSTM) ). Появился новый алгоритм, называемый Calibrated Quantum Mesh (CQM), который обещает повысить точность поиска на естественном языке без использования размеченных данных обучения.
https://habr.com/ru/post/467529/
🔗 CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN /...
Хабр
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке
CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN / LSTM (Рекуррентные нейронные сети RNN...
Google at Interspeech 2019
http://ai.googleblog.com/2019/09/google-at-interspeech-2019.html
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Google at Interspeech 2019
Andrew Helton, Editor, Google Research Communications This week, Graz, Austria hosts the 20th Annual Conference of the International Spee...
http://ai.googleblog.com/2019/09/google-at-interspeech-2019.html
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Google at Interspeech 2019
Andrew Helton, Editor, Google Research Communications This week, Graz, Austria hosts the 20th Annual Conference of the International Spee...
blog.research.google
Google at Interspeech 2019
Train and Deploy the Mighty BERT based NLP models using FastBert and AWS SageMaker
🔗 Train and Deploy the Mighty BERT based NLP models using FastBert and AWS SageMaker
Transformer models for Production — Train, Deploy, Repeat!!!
🔗 Train and Deploy the Mighty BERT based NLP models using FastBert and AWS SageMaker
Transformer models for Production — Train, Deploy, Repeat!!!
Medium
Train and Deploy the Mighty BERT based NLP models using FastBert and AWS SageMaker
Transformer models for Production — Train, Deploy, Repeat!!!
Graduate Admission Prediction Using Machine Learning
🔗 Graduate Admission Prediction Using Machine Learning
Helping Students in Shortlisting Universities with Their Profiles
🔗 Graduate Admission Prediction Using Machine Learning
Helping Students in Shortlisting Universities with Their Profiles
Medium
Graduate Admission Prediction Using Machine Learning
Helping Students in Shortlisting Universities with Their Profiles
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
📝 Паттерсон Д., Гибсон А. - Глубокое обучение с точки зрения практика - 2018.pdf - 💾15 505 277
📝 Паттерсон Д., Гибсон А. - Глубокое обучение с точки зрения практика - 2018.pdf - 💾15 505 277
Visualizing 100,000 Amazon Products
🔗 Visualizing 100,000 Amazon Products
Fast sentence embeddings (fse) enables you to compute sentence embeddings for millions of reviews in only a few minutes.
🔗 Visualizing 100,000 Amazon Products
Fast sentence embeddings (fse) enables you to compute sentence embeddings for millions of reviews in only a few minutes.
Medium
Visualizing 100,000 Amazon Products
Fast sentence embeddings (fse) enables you to compute sentence embeddings for millions of reviews in only a few minutes.
Predicting Battery Lifetime with CNNs
🔗 Predicting Battery Lifetime with CNNs
Analyzing sequential data with TensorFlow 2
🔗 Predicting Battery Lifetime with CNNs
Analyzing sequential data with TensorFlow 2
Medium
Predicting Battery Lifetime with CNNs
Analyzing sequential data with TensorFlow 2
🎥 [Part3] Machine Learning A-Z™: Hands-On Python & R In Data Science 2019
👁 1 раз ⏳ 5109 сек.
👁 1 раз ⏳ 5109 сек.
Learn to create Machine Learning Algorithms in Python and R from two Data Science experts. Code templates included.
###############################
Created by Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, SuperDataScience Support
###############################
What you'll learn
Master Machine Learning on Python & R
Have a great intuition of many Machine Learning models
Make accurate predictions
Make powerful analysis
Make robust Machine Learning models
Create strong added value toVk
[Part3] Machine Learning A-Z™: Hands-On Python & R In Data Science 2019
Learn to create Machine Learning Algorithms in Python and R from two Data Science experts. Code templates included.
###############################
Created by Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, SuperDataScience Support
######…
###############################
Created by Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, SuperDataScience Support
######…
🎥 SAS Demo | Deep Learning with Python (DLPy) and SAS Viya for Computer Vision
👁 1 раз ⏳ 2363 сек.
👁 1 раз ⏳ 2363 сек.
In this SAS demo, you'll learn about the SAS Deep Learning Python API, or DLPy for short. This series will focus on the newest computer vision models supported by DLPy. DLPy enables data scientists familiar with Python to take advantage of the deep learning and computer vision features in SAS Viya.
DLPy is available at – https://github.com/sassoftware/python-dlpy
These section may be watch in any order.
00:00 - Introduction to the Deep Learning with Python (DLPy) and SAS Viya for Computer Vision videoVk
SAS Demo | Deep Learning with Python (DLPy) and SAS Viya for Computer Vision
In this SAS demo, you'll learn about the SAS Deep Learning Python API, or DLPy for short. This series will focus on the newest computer vision models supported by DLPy. DLPy enables data scientists familiar with Python to take advantage of the deep learning…
🎥 Office Hours: 12 Sept. 2019
👁 1 раз ⏳ 3485 сек.
👁 1 раз ⏳ 3485 сек.
During this live Office Hours session I answer the following questions:
- (09:15) Command line arguments and argparse
- Learn how to properly use command line arguments
- Resolve common “USAGE” errors that you will encounter
- (20:50) What IDEs do you recommend for computer vision and deep learning development?
- Sublime Text for smaller projects
- PyCharm for larger projects
- For RPi try to use remote development
- (23:20) How can we use OpenCV OCR for newspaper text recognition?Vk
Office Hours: 12 Sept. 2019
During this live Office Hours session I answer the following questions:
- (09:15) Command line arguments and argparse
- Learn how to properly use command line arguments
- Resolve common “USAGE” errors that you will encounter
- (20:50) What IDEs do…
- (09:15) Command line arguments and argparse
- Learn how to properly use command line arguments
- Resolve common “USAGE” errors that you will encounter
- (20:50) What IDEs do…
🎥 Tutorial: Deep Learning - Dima Duev - 6/24/2019
👁 2 раз ⏳ 2718 сек.
👁 2 раз ⏳ 2718 сек.
AstroInformatics 2019 Conference: Data Science and X-informatics
http://astroinformatics2019.org/Vk
Tutorial: Deep Learning - Dima Duev - 6/24/2019
AstroInformatics 2019 Conference: Data Science and X-informatics
http://astroinformatics2019.org/
http://astroinformatics2019.org/