Neural Networks | Нейронные сети
11.6K subscribers
801 photos
183 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🎥 Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).
👁 25 раз 1412 сек.
Курс 4. Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).
Или любой другой язык.

Смысл инструмента.
При установленном jupyter notebook, мы можем работать с файлами с расширением .py и, например разбираться подробно в кусках кода, так и в полных функциях, видеть сразу результат и сохранять результат работы в формате notebook .ipybn.

Очень круто!

Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).

https://spb-tut.ru/course/kurs-4-eschyo-odin-krutejshij-instrument-ot-j
🎥 TensorFlow 2.0 Tutorial for Beginners 14 - Human Activity Recognition using Accelerometer and CNN
👁 3 раз 3215 сек.
Download Working File: https://github.com/laxmimerit/Human-Activity-Recognition-Using-Accelerometer-Data-and-CNN

In this lesson, you will learn how you can use Accelerometer data to classify human activity using CNN.


Like Facebook Page:
https://www.facebook.com/kgptalkie/

Watch Full Playlists:
Deep Learning with TensorFlow 2.0 Tutorials: https://www.youtube.com/watch?v=JHNX5ugPa7s&list=PLc2rvfiptPSR3iwFp1VHVJFK4yAMo0wuF

Feature Selection in Machine Learning using Python: https://www.youtube.com/play
​Как проводить A/B-тестирование на 15 000 офлайн-магазинах
Блог компании X5 Retail Group,

В этой статье мы расскажем о нашей методологии A/B-тестирования и сложностях, с которыми мы ежедневно сталкиваемся.

В Big Data Х5 работает около 200 человек, среди которых 70 дата сайентистов и дата аналитиков. Основная наша часть занимается конкретными продуктами – спросом, ассортиментом, промо-кампаниями и т.д. Помимо них, есть наша отдельная команда Ad-hoc аналитики.
https://habr.com/ru/company/X5RetailGroup/blog/466349/

🔗 Как проводить A/B-тестирование на 15 000 офлайн-магазинах
Привет! На связи команда Ad-hoc аналитики Big Data из X5 Retail Group. В этой статье мы расскажем о нашей методологии A/B-тестирования и сложностях, с которыми...
🎥 OpenCV Python Tutorial For Beginners 36 - Eye Detection Haar Feature based Cascade Classifiers
👁 1 раз 433 сек.
code - https://gist.github.com/pknowledge/9f380bb4ddd04274dbaffcfe634fa220
OpenCV pre-trained classifiers for face, eyes:
https://github.com/opencv/opencv/tree/master/data/haarcascades

In this video on OpenCV Python Tutorial For Beginners, we are going to see How we can do Eye Detection using Haar Feature based Cascade Classifiers.

By the end of the tutorial, you will be able to build a lane-detection algorithm fuelled entirely by Computer Vision.
OpenCV is an image processing library created by Intel an
​Explanation based Handwriting Verification

Authors: Mihir Chauhan, Mohammad Abuzar Shaikh, Sargur N. Srihari

Abstract: Deep learning system have drawback that their output is not accompanied with ex-planation. In a domain such as forensic handwriting verification it is essential to provideexplanation to jurors. The goal of handwriting verification is to find a measure of confi-dence whether the given handwritten samples are written by the same or different writer.We propose a method to generate explanations for the confidence provided by convolu-tional neural network (CNN) which maps the input image to 15 annotations (features)provided by experts.
https://arxiv.org/abs/1909.02548

🔗 Explanation based Handwriting Verification
Deep learning system have drawback that their output is not accompanied with ex-planation. In a domain such as forensic handwriting verification it is essential to provideexplanation to jurors. The goal of handwriting verification is to find a measure of confi-dence whether the given handwritten samples are written by the same or different writer.We propose a method to generate explanations for the confidence provided by convolu-tional neural network (CNN) which maps the input image to 15 annotations (features)provided by experts. Our system comprises of: (1) Feature learning network (FLN),a differentiable system, (2) Inference module for providing explanations. Furthermore,inference module provides two types of explanations: (a) Based on cosine similaritybetween categorical probabilities of each feature, (b) Based on Log-Likelihood Ratio(LLR) using directed probabilistic graphical model. We perform experiments using acombination of feature learning network (FLN) and each inference module. We evaluateour syst
🎥 Deep Learning Full Course - 7 Hours | Deep Learning Tutorial | Edureka
👁 3 раз 21746 сек.
** AI & Deep Learning with TensorFlow: https://www.edureka.co/ai-deep-learning-with-tensorflow **
This Edureka Deep Learning Full Course video will help you understand and learn Deep Learning & Tensorflow in detail. This Deep Learning Tutorial is ideal for both beginners as well as professionals who want to master Deep Learning Algorithms. Below are the topics covered in this Deep Learning tutorial video:
3:11 What is Deep Learning
3:55 Why Artificial Intelligence?
5:48 What is AI?
6:53 Applications of AI
8
​Vijay Kumar: Flying Robots | Artificial Intelligence (AI) Podcast

🔗 Vijay Kumar: Flying Robots | Artificial Intelligence (AI) Podcast
Vijay Kumar is one of the top roboticists in the world, professor at the University of Pennsylvania, Dean of Penn Engineering, former director of GRASP lab, or the General Robotics, Automation, Sensing and Perception Laboratory at Penn that was established back in 1979, 40 years ago. Vijay is perhaps best known for his work in multi-robot systems (or robot swarms) and micro aerial vehicles, robots that elegantly cooperate in flight under all the uncertainty and challenges that real-world conditions present.