Neural Networks | Нейронные сети
11.6K subscribers
801 photos
183 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Finding image pathways

🔗 Finding image pathways
Using images from Wellcome Collection’s archive we made pathways of ‘connecting’ images to expose the collection in a different way
​Kaggle Live Coding: Identifying the most important words in a cluster | Kaggle

🔗 Kaggle Live Coding: Identifying the most important words in a cluster | Kaggle
This week we'll continue with our clustering project and look into how to determine which words are most important in each cluster. Saliency script: https://www.kaggle.com/rebeccaturner/get-frequency-saliency-of-kaggle-lexicon Notebook: https://www.kaggle.com/rtatman/forum-post-embeddings-clustering SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's pl
🎥 Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).
👁 25 раз 1412 сек.
Курс 4. Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).
Или любой другой язык.

Смысл инструмента.
При установленном jupyter notebook, мы можем работать с файлами с расширением .py и, например разбираться подробно в кусках кода, так и в полных функциях, видеть сразу результат и сохранять результат работы в формате notebook .ipybn.

Очень круто!

Ещё один крутейший инструмент от Jupyter Notebook + Django (Python).

https://spb-tut.ru/course/kurs-4-eschyo-odin-krutejshij-instrument-ot-j
🎥 TensorFlow 2.0 Tutorial for Beginners 14 - Human Activity Recognition using Accelerometer and CNN
👁 3 раз 3215 сек.
Download Working File: https://github.com/laxmimerit/Human-Activity-Recognition-Using-Accelerometer-Data-and-CNN

In this lesson, you will learn how you can use Accelerometer data to classify human activity using CNN.


Like Facebook Page:
https://www.facebook.com/kgptalkie/

Watch Full Playlists:
Deep Learning with TensorFlow 2.0 Tutorials: https://www.youtube.com/watch?v=JHNX5ugPa7s&list=PLc2rvfiptPSR3iwFp1VHVJFK4yAMo0wuF

Feature Selection in Machine Learning using Python: https://www.youtube.com/play
​Как проводить A/B-тестирование на 15 000 офлайн-магазинах
Блог компании X5 Retail Group,

В этой статье мы расскажем о нашей методологии A/B-тестирования и сложностях, с которыми мы ежедневно сталкиваемся.

В Big Data Х5 работает около 200 человек, среди которых 70 дата сайентистов и дата аналитиков. Основная наша часть занимается конкретными продуктами – спросом, ассортиментом, промо-кампаниями и т.д. Помимо них, есть наша отдельная команда Ad-hoc аналитики.
https://habr.com/ru/company/X5RetailGroup/blog/466349/

🔗 Как проводить A/B-тестирование на 15 000 офлайн-магазинах
Привет! На связи команда Ad-hoc аналитики Big Data из X5 Retail Group. В этой статье мы расскажем о нашей методологии A/B-тестирования и сложностях, с которыми...
🎥 OpenCV Python Tutorial For Beginners 36 - Eye Detection Haar Feature based Cascade Classifiers
👁 1 раз 433 сек.
code - https://gist.github.com/pknowledge/9f380bb4ddd04274dbaffcfe634fa220
OpenCV pre-trained classifiers for face, eyes:
https://github.com/opencv/opencv/tree/master/data/haarcascades

In this video on OpenCV Python Tutorial For Beginners, we are going to see How we can do Eye Detection using Haar Feature based Cascade Classifiers.

By the end of the tutorial, you will be able to build a lane-detection algorithm fuelled entirely by Computer Vision.
OpenCV is an image processing library created by Intel an
​Explanation based Handwriting Verification

Authors: Mihir Chauhan, Mohammad Abuzar Shaikh, Sargur N. Srihari

Abstract: Deep learning system have drawback that their output is not accompanied with ex-planation. In a domain such as forensic handwriting verification it is essential to provideexplanation to jurors. The goal of handwriting verification is to find a measure of confi-dence whether the given handwritten samples are written by the same or different writer.We propose a method to generate explanations for the confidence provided by convolu-tional neural network (CNN) which maps the input image to 15 annotations (features)provided by experts.
https://arxiv.org/abs/1909.02548

🔗 Explanation based Handwriting Verification
Deep learning system have drawback that their output is not accompanied with ex-planation. In a domain such as forensic handwriting verification it is essential to provideexplanation to jurors. The goal of handwriting verification is to find a measure of confi-dence whether the given handwritten samples are written by the same or different writer.We propose a method to generate explanations for the confidence provided by convolu-tional neural network (CNN) which maps the input image to 15 annotations (features)provided by experts. Our system comprises of: (1) Feature learning network (FLN),a differentiable system, (2) Inference module for providing explanations. Furthermore,inference module provides two types of explanations: (a) Based on cosine similaritybetween categorical probabilities of each feature, (b) Based on Log-Likelihood Ratio(LLR) using directed probabilistic graphical model. We perform experiments using acombination of feature learning network (FLN) and each inference module. We evaluateour syst