Neural Networks | Нейронные сети
11.6K subscribers
801 photos
182 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Learning Filter Basis for Convolutional Neural Network Compression

Authors: Yawei Li, Shuhang Gu, Luc Van Gool, Radu Timofte

Abstract: Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers.

https://arxiv.org/abs/1908.08932

🔗 Learning Filter Basis for Convolutional Neural Network Compression
Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers. Moreover, quite a large number of filters are also used for a single convolutional layer, which exaggerates the parameter burden of current methods. Thus, in this paper, we try to reduce the number of parameters of CNNs by learning a basis of the filters in convolutional layers. For the forward pass, the learned basis is used to approximate the original filters and then used as parameters for the convolutional layers. We validate our proposed solution for multiple CNN architectures on image classification and image super-resolution benchmarks and compare favorably to the existing state-of-the-art in terms of reduction of parameters and preservation of accuracy.
🎥 Next gen AI: Agent-based simulation + Reinforcement Learning
👁 1 раз 7451 сек.
Panel discussion lead by Dr. Anand Rao, Partner and Global Artificial Intelligence Lead at PwC. More info below...
---
Upcoming webinar from AL and Skymind: Simulation and automated deep learning
https://www.anylogic.com/resources/training-events/anylogic-ai-webinar-september-2019/?utm_source=youtube&utm_medium=desc&utm_campaign=anl-webinar-ai-sep19&utm_content=site
---
Combining agent-based simulation with reinforcement learning points to a new era of continuously learning agents. Is this the next generati
Unconventional Neural Networks
Generative Model Basics
Generating Pythonic code with Neural Network
Generating with MNIST
Classification Generator Training Attempt
Classification Generator Testing Attempt
Drawing a Number by Request with Generative Model
Deep Dream
Deep Dream Frames
Deep Dream Video
Doing Math with Deep Learning (Addition)
#neuralnetwork
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🎥 Generative Model Basics - Unconventional Neural Networks p.1
👁 2560 раз 851 сек.


🎥 Generating Pythonic code with Neural Network - Unconventional Neural Networks p.2
👁 1 раз 1188 сек.
Hello and welcome to part 2 of our series of just poking around with neural networks. In the previous tutorial, we played with a generative model, ...

🎥 Generating with MNIST - Unconventional Neural Networks p.3
👁 1 раз 616 сек.
Hello and welcome to part 3 of our series of experimenting with neural networks. In this tutorial, we're going to take the same generative model th...

🎥 Classification Generator Training Attempt - Unconventional Neural Networks p.4
👁 1 раз 1138 сек.
Hello and welcome to part 4 of our series of having some fun with neural networks, currently with generative networks. Wher we left off, we're buil...

🎥 Classification Generator Testing Attempt - Unconventional Neural Networks p.5
👁 1 раз 726 сек.
Hello and welcome to part 5 of our neural network shenanigans series. Lately, we've been working on doing classification with a generative model. I...

🎥 Drawing a Number by Request with Generative Model - Unconventional Neural Networks p.6
👁 1 раз 561 сек.
Hello and welcome to part 6 of our neural network antics. In the previous tutorial, we attempted to use a generative model to generate classes of M...

🎥 Deep Dream - Unconventional Neural Networks p.7
👁 1 раз 768 сек.
In this part, we're going to get into deep dreaming in TensorFlow. If you are not familiar with deep dream, it's a method we can use to allow a neu...

🎥 Deep Dream Frames- Unconventional Neural Networks p.8
👁 1 раз 576 сек.
In this Tutorial, we cover the idea of taking deep dream images, and using them as frames in a video.

Text tutorials and sample code: https://pyth...


🎥 Deep Dream Video- Unconventional Neural Networks p.9
👁 1 раз 537 сек.
We've created many deep dream images up to this point, and now we're looking to convert them to video.

Text tutorials and sample code: https://pyt...


🎥 Doing Math with Deep Learning (Addition)- Unconventional Neural Networks p.10
👁 1 раз 933 сек.
Can we do math with deep learning? Let's see how far we can go!

Github specific commit for the seq2seq chatbot used here: https://github.com/danie...
🎥 Signate Cigarette Pack Recognition — Николай Сергиевский
👁 1 раз 2070 сек.
Николай Сергиевский рассказывает про опыт участия в соревновании Cigarette Pack Recognition на японской платформе Signate. Николай занял второе место. Из видео вы сможете узнать:
- Описание соревнования по распознаванию сигаретных пачек на полках
- Описание решения второго места
- Как выстроить решение для задачи детектирования, классификации и embedding
- Трюки, которые помогают занимать призовые места

Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/

Узнать о новых тренировках и видео
​Напиши свою песню за 10 минут (модуль textgenrnn Python3)
#Python

Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).

Задача будет состоять в том, чтобы выгрузить данные(тексты) c веб-сайтов а потом на их основе обучить нейронную сеть.

На самом деле, можно разбить работу на 2 этапа:
Этап 1: выгрузить и сохранить тексты песни в удобном формате.
Этап 2: обучить свою собственную нейронную сеть.
https://habr.com/ru/post/464973/

🔗 Напиши свою песню за 10 минут (модуль textgenrnn Python3)
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чт...
🎥 3Blue1Brown & Mathematics | Siraj Raval Podcast #3
👁 1 раз 4653 сек.
3Blue1Brown aka Grant Sanderson is an outstanding math animation artist, scholar, & educator. In this episode, I ask him about his workflow, the tools he uses, the nature of consciousness, machine learning, & so much more! Grant studied mathematics at Stanford as an undergraduate, then became a multivariable calculus fellow for KhanAcademy through their talent search program. He started making math animation videos on Youtube in 2015, and has since amassed over 2 million subscribers. It was a wonderful con
​SQL Summer Camp: Joins & Unions | Kaggle

🔗 SQL Summer Camp: Joins & Unions | Kaggle
Welcome back, campers! We're kicking the Advanced SQL course off with Joins and Unions. These techniques let you combine data from across different tables in your database. SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build wit
​Exploring Weight Agnostic Neural Networks

http://ai.googleblog.com/2019/08/exploring-weight-agnostic-neural.html

🔗 Exploring Weight Agnostic Neural Networks
Posted by Adam Gaier, Student Researcher and David Ha, Staff Research Scientist, Google Research, Tokyo When training a neural network ...
🎥 Machine Learning with Containers and Amazon SageMaker - AWS Online Tech Talks
👁 1 раз 2986 сек.
Data scientists and machine learning engineers use containers to create custom, lightweight environments to train and serve models at scale with deep learning frameworks such as TensorFlow, Apache MXNet, and PyTorch. With containers, developers get consistent environments for development and deployment. In this tech talk, we'll show you how to use AWS Deep Learning Containers to train and serve models at scale with Amazon SageMaker.

Learning Objectives:
- Learn about machine learning using containers and
🎥 How AI and machine learning will make hoteliers more money while making guests happy!
👁 1 раз 1651 сек.
Hoteliers have been talking about collecting data for years, but have struggled to turn it into something practical. Now, the advances in technology and processing power are allowing the use of machine learning to leverage that data in meaningful ways. But, what does that really mean? Kelly McGuire sits down with Glenn and Estella while at HITEC to break all down for us.

Guest: Kelly McGuire, PhD, Revenue Management, Cornell and former Sr VP, Revenue Management at MGM

Sponsors: Cendyn and GCommerce
Artificial Intelligence Approaches

Authors: Yingjie Hu, Wenwen Li, Dawn Wright, Orhun Aydin, Daniel Wilson, Omar Maher, Mansour Raad

Abstract: Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society.

https://arxiv.org/abs/1908.10345

🔗 Artificial Intelligence Approaches
Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society. This entry briefly reviews the recent development of AI with a focus on machine learning and deep learning approaches. We discuss the integration of AI with geography and particularly geographic information science, and present a number of GeoAI applications and possible future directions.
🎥 Kaggle Gendered Pronoun Resolution — Павел Петроченко, Денис Денисенко
👁 1 раз 1426 сек.
Денис Денисенко и Павел Петроченко рассказывают про опыт участия в соревновании Kaggle Gendered Pronoun Resolution, где они заработали серебряную медаль. В команде также участвовали Константин Свиридов, Павел Плесков.

Когда мы читаем текст и встречаем местоимения, то легко понимаем, к какому существительному оно относится. Про эту нетривиальную для компьютера задачу прошёл конкурс, которому и посвящён этот доклад.

Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/

Узнать о новых трен
​Kaggle Coffee Chat: Joel Grus | Kaggle

🔗 Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow for fizzbuzz and, of course, why he doesn't like notebooks. You can follow Joel at https://twitter.com/joelgrus SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and