Learning Filter Basis for Convolutional Neural Network Compression
Authors: Yawei Li, Shuhang Gu, Luc Van Gool, Radu Timofte
Abstract: Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers.
https://arxiv.org/abs/1908.08932
🔗 Learning Filter Basis for Convolutional Neural Network Compression
Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers. Moreover, quite a large number of filters are also used for a single convolutional layer, which exaggerates the parameter burden of current methods. Thus, in this paper, we try to reduce the number of parameters of CNNs by learning a basis of the filters in convolutional layers. For the forward pass, the learned basis is used to approximate the original filters and then used as parameters for the convolutional layers. We validate our proposed solution for multiple CNN architectures on image classification and image super-resolution benchmarks and compare favorably to the existing state-of-the-art in terms of reduction of parameters and preservation of accuracy.
Authors: Yawei Li, Shuhang Gu, Luc Van Gool, Radu Timofte
Abstract: Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers.
https://arxiv.org/abs/1908.08932
🔗 Learning Filter Basis for Convolutional Neural Network Compression
Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers. Moreover, quite a large number of filters are also used for a single convolutional layer, which exaggerates the parameter burden of current methods. Thus, in this paper, we try to reduce the number of parameters of CNNs by learning a basis of the filters in convolutional layers. For the forward pass, the learned basis is used to approximate the original filters and then used as parameters for the convolutional layers. We validate our proposed solution for multiple CNN architectures on image classification and image super-resolution benchmarks and compare favorably to the existing state-of-the-art in terms of reduction of parameters and preservation of accuracy.
🎥 Next gen AI: Agent-based simulation + Reinforcement Learning
👁 1 раз ⏳ 7451 сек.
👁 1 раз ⏳ 7451 сек.
Panel discussion lead by Dr. Anand Rao, Partner and Global Artificial Intelligence Lead at PwC. More info below...
---
Upcoming webinar from AL and Skymind: Simulation and automated deep learning
https://www.anylogic.com/resources/training-events/anylogic-ai-webinar-september-2019/?utm_source=youtube&utm_medium=desc&utm_campaign=anl-webinar-ai-sep19&utm_content=site
---
Combining agent-based simulation with reinforcement learning points to a new era of continuously learning agents. Is this the next generatiVk
Next gen AI: Agent-based simulation + Reinforcement Learning
Panel discussion lead by Dr. Anand Rao, Partner and Global Artificial Intelligence Lead at PwC. More info below...
---
Upcoming webinar from AL and Skymind: Simulation and automated deep learning
https://www.anylogic.com/resources/training-events/anylogic…
---
Upcoming webinar from AL and Skymind: Simulation and automated deep learning
https://www.anylogic.com/resources/training-events/anylogic…
Unconventional Neural Networks
Generative Model Basics
Generating Pythonic code with Neural Network
Generating with MNIST
Classification Generator Training Attempt
Classification Generator Testing Attempt
Drawing a Number by Request with Generative Model
Deep Dream
Deep Dream Frames
Deep Dream Video
Doing Math with Deep Learning (Addition)
#neuralnetwork
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Generative Model Basics - Unconventional Neural Networks p.1
👁 2560 раз ⏳ 851 сек.
🎥 Generating Pythonic code with Neural Network - Unconventional Neural Networks p.2
👁 1 раз ⏳ 1188 сек.
🎥 Generating with MNIST - Unconventional Neural Networks p.3
👁 1 раз ⏳ 616 сек.
🎥 Classification Generator Training Attempt - Unconventional Neural Networks p.4
👁 1 раз ⏳ 1138 сек.
🎥 Classification Generator Testing Attempt - Unconventional Neural Networks p.5
👁 1 раз ⏳ 726 сек.
🎥 Drawing a Number by Request with Generative Model - Unconventional Neural Networks p.6
👁 1 раз ⏳ 561 сек.
🎥 Deep Dream - Unconventional Neural Networks p.7
👁 1 раз ⏳ 768 сек.
🎥 Deep Dream Frames- Unconventional Neural Networks p.8
👁 1 раз ⏳ 576 сек.
🎥 Deep Dream Video- Unconventional Neural Networks p.9
👁 1 раз ⏳ 537 сек.
🎥 Doing Math with Deep Learning (Addition)- Unconventional Neural Networks p.10
👁 1 раз ⏳ 933 сек.
Generative Model Basics
Generating Pythonic code with Neural Network
Generating with MNIST
Classification Generator Training Attempt
Classification Generator Testing Attempt
Drawing a Number by Request with Generative Model
Deep Dream
Deep Dream Frames
Deep Dream Video
Doing Math with Deep Learning (Addition)
#neuralnetwork
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Generative Model Basics - Unconventional Neural Networks p.1
👁 2560 раз ⏳ 851 сек.
🎥 Generating Pythonic code with Neural Network - Unconventional Neural Networks p.2
👁 1 раз ⏳ 1188 сек.
Hello and welcome to part 2 of our series of just poking around with neural networks. In the previous tutorial, we played with a generative model, ...🎥 Generating with MNIST - Unconventional Neural Networks p.3
👁 1 раз ⏳ 616 сек.
Hello and welcome to part 3 of our series of experimenting with neural networks. In this tutorial, we're going to take the same generative model th...🎥 Classification Generator Training Attempt - Unconventional Neural Networks p.4
👁 1 раз ⏳ 1138 сек.
Hello and welcome to part 4 of our series of having some fun with neural networks, currently with generative networks. Wher we left off, we're buil...🎥 Classification Generator Testing Attempt - Unconventional Neural Networks p.5
👁 1 раз ⏳ 726 сек.
Hello and welcome to part 5 of our neural network shenanigans series. Lately, we've been working on doing classification with a generative model. I...🎥 Drawing a Number by Request with Generative Model - Unconventional Neural Networks p.6
👁 1 раз ⏳ 561 сек.
Hello and welcome to part 6 of our neural network antics. In the previous tutorial, we attempted to use a generative model to generate classes of M...🎥 Deep Dream - Unconventional Neural Networks p.7
👁 1 раз ⏳ 768 сек.
In this part, we're going to get into deep dreaming in TensorFlow. If you are not familiar with deep dream, it's a method we can use to allow a neu...🎥 Deep Dream Frames- Unconventional Neural Networks p.8
👁 1 раз ⏳ 576 сек.
In this Tutorial, we cover the idea of taking deep dream images, and using them as frames in a video.
Text tutorials and sample code: https://pyth...🎥 Deep Dream Video- Unconventional Neural Networks p.9
👁 1 раз ⏳ 537 сек.
We've created many deep dream images up to this point, and now we're looking to convert them to video.
Text tutorials and sample code: https://pyt...🎥 Doing Math with Deep Learning (Addition)- Unconventional Neural Networks p.10
👁 1 раз ⏳ 933 сек.
Can we do math with deep learning? Let's see how far we can go!
Github specific commit for the seq2seq chatbot used here: https://github.com/danie...Object Detection with 10 lines of code
🔗 Object Detection with 10 lines of code
Part 2 of this tutorial for detecting your custom objects is available via this link.
🔗 Object Detection with 10 lines of code
Part 2 of this tutorial for detecting your custom objects is available via this link.
Medium
Object Detection with 10 lines of code
Part 2 of this tutorial for detecting your custom objects is available via this link.
🎥 Signate Cigarette Pack Recognition — Николай Сергиевский
👁 1 раз ⏳ 2070 сек.
👁 1 раз ⏳ 2070 сек.
Николай Сергиевский рассказывает про опыт участия в соревновании Cigarette Pack Recognition на японской платформе Signate. Николай занял второе место. Из видео вы сможете узнать:
- Описание соревнования по распознаванию сигаретных пачек на полках
- Описание решения второго места
- Как выстроить решение для задачи детектирования, классификации и embedding
- Трюки, которые помогают занимать призовые места
Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/
Узнать о новых тренировках и видеоVk
Signate Cigarette Pack Recognition — Николай Сергиевский
Николай Сергиевский рассказывает про опыт участия в соревновании Cigarette Pack Recognition на японской платформе Signate. Николай занял второе место. Из видео вы сможете узнать:
- Описание соревнования по распознаванию сигаретных пачек на полках
- Описание…
- Описание соревнования по распознаванию сигаретных пачек на полках
- Описание…
Напиши свою песню за 10 минут (модуль textgenrnn Python3)
#Python
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).
Задача будет состоять в том, чтобы выгрузить данные(тексты) c веб-сайтов а потом на их основе обучить нейронную сеть.
На самом деле, можно разбить работу на 2 этапа:
Этап 1: выгрузить и сохранить тексты песни в удобном формате.
Этап 2: обучить свою собственную нейронную сеть.
https://habr.com/ru/post/464973/
🔗 Напиши свою песню за 10 минут (модуль textgenrnn Python3)
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чт...
#Python
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).
Задача будет состоять в том, чтобы выгрузить данные(тексты) c веб-сайтов а потом на их основе обучить нейронную сеть.
На самом деле, можно разбить работу на 2 этапа:
Этап 1: выгрузить и сохранить тексты песни в удобном формате.
Этап 2: обучить свою собственную нейронную сеть.
https://habr.com/ru/post/464973/
🔗 Напиши свою песню за 10 минут (модуль textgenrnn Python3)
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чт...
Хабр
Напиши свою песню за 10 минут (модуль textgenrnn Python3)
Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чт...
🎥 3Blue1Brown & Mathematics | Siraj Raval Podcast #3
👁 1 раз ⏳ 4653 сек.
👁 1 раз ⏳ 4653 сек.
3Blue1Brown aka Grant Sanderson is an outstanding math animation artist, scholar, & educator. In this episode, I ask him about his workflow, the tools he uses, the nature of consciousness, machine learning, & so much more! Grant studied mathematics at Stanford as an undergraduate, then became a multivariable calculus fellow for KhanAcademy through their talent search program. He started making math animation videos on Youtube in 2015, and has since amassed over 2 million subscribers. It was a wonderful conVk
3Blue1Brown & Mathematics | Siraj Raval Podcast #3
3Blue1Brown aka Grant Sanderson is an outstanding math animation artist, scholar, & educator. In this episode, I ask him about his workflow, the tools he uses, the nature of consciousness, machine learning, & so much more! Grant studied mathematics at Stanford…
SQL Summer Camp: Joins & Unions | Kaggle
🔗 SQL Summer Camp: Joins & Unions | Kaggle
Welcome back, campers! We're kicking the Advanced SQL course off with Joins and Unions. These techniques let you combine data from across different tables in your database. SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build wit
🔗 SQL Summer Camp: Joins & Unions | Kaggle
Welcome back, campers! We're kicking the Advanced SQL course off with Joins and Unions. These techniques let you combine data from across different tables in your database. SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build wit
YouTube
SQL Summer Camp: Joins & Unions | Kaggle
Welcome back, campers! We're kicking the Advanced SQL course off with Joins and Unions. These techniques let you combine data from across different tables in...
Decoding the Black Box: An Important Introduction to Interpretable Machine Learning Models in Python
🔗 Decoding the Black Box: An Important Introduction to Interpretable Machine Learning Models in Python
Overview
🔗 Decoding the Black Box: An Important Introduction to Interpretable Machine Learning Models in Python
Overview
Medium
Decoding the Black Box: An Important Introduction to Interpretable Machine Learning Models in Python
Overview
Exploring Weight Agnostic Neural Networks
http://ai.googleblog.com/2019/08/exploring-weight-agnostic-neural.html
🔗 Exploring Weight Agnostic Neural Networks
Posted by Adam Gaier, Student Researcher and David Ha, Staff Research Scientist, Google Research, Tokyo When training a neural network ...
http://ai.googleblog.com/2019/08/exploring-weight-agnostic-neural.html
🔗 Exploring Weight Agnostic Neural Networks
Posted by Adam Gaier, Student Researcher and David Ha, Staff Research Scientist, Google Research, Tokyo When training a neural network ...
blog.research.google
Exploring Weight Agnostic Neural Networks
🎥 Machine Learning with Containers and Amazon SageMaker - AWS Online Tech Talks
👁 1 раз ⏳ 2986 сек.
👁 1 раз ⏳ 2986 сек.
Data scientists and machine learning engineers use containers to create custom, lightweight environments to train and serve models at scale with deep learning frameworks such as TensorFlow, Apache MXNet, and PyTorch. With containers, developers get consistent environments for development and deployment. In this tech talk, we'll show you how to use AWS Deep Learning Containers to train and serve models at scale with Amazon SageMaker.
Learning Objectives:
- Learn about machine learning using containers andVk
Machine Learning with Containers and Amazon SageMaker - AWS Online Tech Talks
Data scientists and machine learning engineers use containers to create custom, lightweight environments to train and serve models at scale with deep learning frameworks such as TensorFlow, Apache MXNet, and PyTorch. With containers, developers get consistent…
🎥 Метаобучение в AUTOML: Как строить модели быстрее?
👁 1 раз ⏳ 1919 сек.
👁 1 раз ⏳ 1919 сек.
Мероприятие: MEETUP день 1
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI СбербанкаVk
Метаобучение в AUTOML: Как строить модели быстрее?
Мероприятие: MEETUP день 1
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI Сбербанка
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI Сбербанка
Money Machines: An Interview With an Anonymous Algorithmic Trader
🔗 Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
🔗 Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
Medium
Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
🎥 How AI and machine learning will make hoteliers more money while making guests happy!
👁 1 раз ⏳ 1651 сек.
👁 1 раз ⏳ 1651 сек.
Hoteliers have been talking about collecting data for years, but have struggled to turn it into something practical. Now, the advances in technology and processing power are allowing the use of machine learning to leverage that data in meaningful ways. But, what does that really mean? Kelly McGuire sits down with Glenn and Estella while at HITEC to break all down for us.
Guest: Kelly McGuire, PhD, Revenue Management, Cornell and former Sr VP, Revenue Management at MGM
Sponsors: Cendyn and GCommerceVk
How AI and machine learning will make hoteliers more money while making guests happy!
Hoteliers have been talking about collecting data for years, but have struggled to turn it into something practical. Now, the advances in technology and processing power are allowing the use of machine learning to leverage that data in meaningful ways. But…
Artificial Intelligence Approaches
Authors: Yingjie Hu, Wenwen Li, Dawn Wright, Orhun Aydin, Daniel Wilson, Omar Maher, Mansour Raad
Abstract: Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society.
https://arxiv.org/abs/1908.10345
🔗 Artificial Intelligence Approaches
Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society. This entry briefly reviews the recent development of AI with a focus on machine learning and deep learning approaches. We discuss the integration of AI with geography and particularly geographic information science, and present a number of GeoAI applications and possible future directions.
Authors: Yingjie Hu, Wenwen Li, Dawn Wright, Orhun Aydin, Daniel Wilson, Omar Maher, Mansour Raad
Abstract: Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society.
https://arxiv.org/abs/1908.10345
🔗 Artificial Intelligence Approaches
Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society. This entry briefly reviews the recent development of AI with a focus on machine learning and deep learning approaches. We discuss the integration of AI with geography and particularly geographic information science, and present a number of GeoAI applications and possible future directions.
🎥 Kaggle Gendered Pronoun Resolution — Павел Петроченко, Денис Денисенко
👁 1 раз ⏳ 1426 сек.
👁 1 раз ⏳ 1426 сек.
Денис Денисенко и Павел Петроченко рассказывают про опыт участия в соревновании Kaggle Gendered Pronoun Resolution, где они заработали серебряную медаль. В команде также участвовали Константин Свиридов, Павел Плесков.
Когда мы читаем текст и встречаем местоимения, то легко понимаем, к какому существительному оно относится. Про эту нетривиальную для компьютера задачу прошёл конкурс, которому и посвящён этот доклад.
Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/
Узнать о новых тренVk
Kaggle Gendered Pronoun Resolution — Павел Петроченко, Денис Денисенко
Денис Денисенко и Павел Петроченко рассказывают про опыт участия в соревновании Kaggle Gendered Pronoun Resolution, где они заработали серебряную медаль. В команде также участвовали Константин Свиридов, Павел Плесков.
Когда мы читаем текст и встречаем…
Когда мы читаем текст и встречаем…
Debugging machine learning models
🔗 Debugging machine learning models
Part 1: Solving high bias and high variance
🔗 Debugging machine learning models
Part 1: Solving high bias and high variance
Medium
Debugging machine learning models
Part 1: Solving high bias and high variance
Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
https://habr.com/ru/news/t/464903/
🔗 Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотноше...
https://habr.com/ru/news/t/464903/
🔗 Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотноше...
Habr
Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе
Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотношению производительность/потребление...
Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотношению производительность/потребление...
Kaggle Coffee Chat: Joel Grus | Kaggle
🔗 Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow for fizzbuzz and, of course, why he doesn't like notebooks. You can follow Joel at https://twitter.com/joelgrus SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and
🔗 Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow for fizzbuzz and, of course, why he doesn't like notebooks. You can follow Joel at https://twitter.com/joelgrus SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and
YouTube
Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow...
Matrix processing with nanophotonics
🔗 Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.
🔗 Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.
Medium
Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.