Protobuf for NVIDIA Jetson
How to deploy a protobuf model from AutoML Vision with Python on a NVIDIA Jetson
https://medium.com/ri-rewe-digital/protobuf-for-nvidia-jetson-e8b2c6ee47cc?source=topic_page---------0------------------1
🔗 Deploy AutoML protobuf model on NVIDIA Jetson
How to deploy a protobuf model from AutoML Vision with Python on a NVIDIA Jetson
How to deploy a protobuf model from AutoML Vision with Python on a NVIDIA Jetson
https://medium.com/ri-rewe-digital/protobuf-for-nvidia-jetson-e8b2c6ee47cc?source=topic_page---------0------------------1
🔗 Deploy AutoML protobuf model on NVIDIA Jetson
How to deploy a protobuf model from AutoML Vision with Python on a NVIDIA Jetson
Medium
Deploy AutoML protobuf model on NVIDIA Jetson
How to deploy a protobuf model from AutoML Vision with Python on a NVIDIA Jetson
🎥 Support vector machines (machine learning ) in R
👁 1 раз ⏳ 532 сек.
👁 1 раз ⏳ 532 сек.
I have explained how to perform support vector machine classifier in machine learning using RVk
Support vector machines (machine learning ) in R
I have explained how to perform support vector machine classifier in machine learning using R
Seeing is Believing — Mesoscopic Neural Networks for Synthetic Image Detection: an Implementation in
🔗 Seeing is Believing — Mesoscopic Neural Networks for Synthetic Image Detection: an Implementation in
Inception layer-powered intermediate detail level recognition
🔗 Seeing is Believing — Mesoscopic Neural Networks for Synthetic Image Detection: an Implementation in
Inception layer-powered intermediate detail level recognition
Medium
Seeing is Believing — Mesoscopic Neural Networks for Synthetic Image Detection: an Implementation in Keras and TensorFlow
Inception layer-powered intermediate detail level recognition
🎥 24x7 AI - Machine Learning - Data Science Tutorials by World's Best Instructors
👁 5 раз ⏳ 42760 сек.
👁 5 раз ⏳ 42760 сек.
Collection of besr tutorials in the field of Data Science - played 24x7 - Learn Machine Learning and Artificial Intelligence whenever you can - Just tune in this live Data Science StationVk
24x7 AI - Machine Learning - Data Science Tutorials by World's Best Instructors
Collection of besr tutorials in the field of Data Science - played 24x7 - Learn Machine Learning and Artificial Intelligence whenever you can - Just tune in this live Data Science Station
AI Learns To Animate Your Face in VR
Paper:https://research.fb.com/publications/vr-facial-animation-via-multiview-image-translation/
video: https://www.youtube.com/watch?v=hkSfHCtpnHU
🔗 Для просмотра нужно войти или зарегистрироваться
Смотрите публикации, фото и другие материалы на Facebook.
🎥 AI Learns To Animate Your Face in VR
👁 1 раз ⏳ 243 сек.
Paper:https://research.fb.com/publications/vr-facial-animation-via-multiview-image-translation/
video: https://www.youtube.com/watch?v=hkSfHCtpnHU
🔗 Для просмотра нужно войти или зарегистрироваться
Смотрите публикации, фото и другие материалы на Facebook.
🎥 AI Learns To Animate Your Face in VR
👁 1 раз ⏳ 243 сек.
❤️ Check out Linode here and get $20 free on your account:
https://www.linode.com/papers
📝 The paper "VR Facial Animation via Multiview Image Translation" is available here:
https://research.fb.com/publications/vr-facial-animation-via-multiview-image-translation/
🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bruno Brito, Bryan Learn, Christian Ahlin, Christoph JadanowsMeta Research
VR Facial Animation via Multiview Image Translation - Meta Research
In this work, we present a bidirectional system that can animate avatar heads of both users’ full likeness using consumer-friendly headset mounted cameras (HMC). There are two main challenges in doing this: unaccommodating camera views and the image-to-avatar…
Bayesian Deep Learning Benchmarks
https://github.com/OATML/bdl-benchmarks
🔗 OATML/bdl-benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
https://github.com/OATML/bdl-benchmarks
🔗 OATML/bdl-benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
GitHub
GitHub - OATML/bdl-benchmarks: Bayesian Deep Learning Benchmarks
Bayesian Deep Learning Benchmarks. Contribute to OATML/bdl-benchmarks development by creating an account on GitHub.
TensorFlow with Apache Arrow Datasets
Apache Arrow enables the means for high-performance data exchange with TensorFlow that is both standardized and optimized for analytics and machine learning. The Arrow datasets from TensorFlow I/O provide a way to bring Arrow data directly into TensorFlow tf.data that will work with existing input pipelines and tf.data.Dataset APIs.
https://medium.com/tensorflow/tensorflow-with-apache-arrow-datasets-cdbcfe80a59f
🔗 TensorFlow with Apache Arrow Datasets
An Overview of Apache Arrow Datasets Plus Example To Run Keras Model Training
Apache Arrow enables the means for high-performance data exchange with TensorFlow that is both standardized and optimized for analytics and machine learning. The Arrow datasets from TensorFlow I/O provide a way to bring Arrow data directly into TensorFlow tf.data that will work with existing input pipelines and tf.data.Dataset APIs.
https://medium.com/tensorflow/tensorflow-with-apache-arrow-datasets-cdbcfe80a59f
🔗 TensorFlow with Apache Arrow Datasets
An Overview of Apache Arrow Datasets Plus Example To Run Keras Model Training
Medium
TensorFlow with Apache Arrow Datasets
An Overview of Apache Arrow Datasets Plus Example To Run Keras Model Training
U-Net Training with Instance-Layer Normalization
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Authors: Xiao-Yun Zhou, Qing-Biao Li, Mali Shen, Peichao Li, Zhao-Yang Wang, Guang-Zhong Yang
Abstract: Normalization layers are essential in a Deep Convolutional Neural Network (DCNN). Various normalization methods have been proposed. The statistics used to normalize the feature maps can be computed at batch, channel, or instance level. However, in most of existing methods, the normalization for each layer is fixed
https://arxiv.org/abs/1908.08466
🔗 U-Net Training with Instance-Layer Normalization
Normalization layers are essential in a Deep Convolutional Neural Network (DCNN). Various normalization methods have been proposed. The statistics used to normalize the feature maps can be computed at batch, channel, or instance level. However, in most of existing methods, the normalization for each layer is fixed. Batch-Instance Normalization (BIN) is one of the first proposed methods that combines two different normalization methods and achieve diverse normalization for different layers. However, two potential issues exist in BIN: first, the Clip function is not differentiable at input values of 0 and 1; second, the combined feature map is not with a normalized distribution which is harmful for signal propagation in DCNN. In this paper, an Instance-Layer Normalization (ILN) layer is proposed by using the Sigmoid function for the feature map combination, and cascading group normalization. The performance of ILN is validated on image segmentation of the Right Ventricle (RV) and Left Ventricle (LV) using U-Net
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Authors: Xiao-Yun Zhou, Qing-Biao Li, Mali Shen, Peichao Li, Zhao-Yang Wang, Guang-Zhong Yang
Abstract: Normalization layers are essential in a Deep Convolutional Neural Network (DCNN). Various normalization methods have been proposed. The statistics used to normalize the feature maps can be computed at batch, channel, or instance level. However, in most of existing methods, the normalization for each layer is fixed
https://arxiv.org/abs/1908.08466
🔗 U-Net Training with Instance-Layer Normalization
Normalization layers are essential in a Deep Convolutional Neural Network (DCNN). Various normalization methods have been proposed. The statistics used to normalize the feature maps can be computed at batch, channel, or instance level. However, in most of existing methods, the normalization for each layer is fixed. Batch-Instance Normalization (BIN) is one of the first proposed methods that combines two different normalization methods and achieve diverse normalization for different layers. However, two potential issues exist in BIN: first, the Clip function is not differentiable at input values of 0 and 1; second, the combined feature map is not with a normalized distribution which is harmful for signal propagation in DCNN. In this paper, an Instance-Layer Normalization (ILN) layer is proposed by using the Sigmoid function for the feature map combination, and cascading group normalization. The performance of ILN is validated on image segmentation of the Right Ventricle (RV) and Left Ventricle (LV) using U-Net
The Poisson Process: Everything you need to know
Learn about the Poisson process and how to simulate it using Python
https://towardsdatascience.com/the-poisson-process-everything-you-need-to-know-322aa0ab9e9a?source=collection_home---4------2-----------------------
🔗 The Poisson Process: Everything you need to know
Learn about the Poisson process and how to simulate it using Python
Learn about the Poisson process and how to simulate it using Python
https://towardsdatascience.com/the-poisson-process-everything-you-need-to-know-322aa0ab9e9a?source=collection_home---4------2-----------------------
🔗 The Poisson Process: Everything you need to know
Learn about the Poisson process and how to simulate it using Python
Medium
The Poisson Process: Everything you need to know
Learn about the Poisson process and how to simulate it using Python
What is the difference between Optimization and Deep Learning and why should you care
Deep Learning is not just Optimization and we need to do something about it
https://towardsdatascience.com/what-is-the-difference-between-optimization-and-deep-learning-and-why-should-you-care-e4dc7c2494fe?source=collection_home---4------0-----------------------
🔗 What is the difference between Optimization and Deep Learning and why should you care
Deep Learning is not just Optimization and we need to do something about it
Deep Learning is not just Optimization and we need to do something about it
https://towardsdatascience.com/what-is-the-difference-between-optimization-and-deep-learning-and-why-should-you-care-e4dc7c2494fe?source=collection_home---4------0-----------------------
🔗 What is the difference between Optimization and Deep Learning and why should you care
Deep Learning is not just Optimization and we need to do something about it
Medium
What is the difference between Optimization and Deep Learning and why should you care
Deep Learning is not just Optimization and we need to do something about it
A New Consciousness of Inclusion in Machine Learning
http://blog.shakirm.com/2019/06/a-new-consciousness-of-inclusion-in-machine-learning/
🔗 A New Consciousness of Inclusion in Machine Learning
On LGBT Freedoms and our Support for Machine Learning in Africa This is an exploration of my thinking and my personal views. Read in · 1147 words · Soon, in two neighbouring countries in Africa, tw…
http://blog.shakirm.com/2019/06/a-new-consciousness-of-inclusion-in-machine-learning/
🔗 A New Consciousness of Inclusion in Machine Learning
On LGBT Freedoms and our Support for Machine Learning in Africa This is an exploration of my thinking and my personal views. Read in · 1147 words · Soon, in two neighbouring countries in Africa, tw…
The Spectator
A New Consciousness of Inclusion in Machine Learning
On LGBT Freedoms and our Support for Machine Learning in Africa This is an exploration of my thinking and my personal views. Read in · 1147 words · Soon, in two neighbouring countries in Africa, tw…
🎥 Industrialized Capsule Net for Text Analytics by Dr. Vijay Agneeswaran & Abhishek Kumar #ODSC_India
👁 1 раз ⏳ 2683 сек.
👁 1 раз ⏳ 2683 сек.
Multi-label text classification is an interesting problem where multiple tags or categories may have to be associated with the given text/documents. Multi-label text classification occurs in numerous real-world scenarios, for instance, in news categorization and in bioinformatics (gene classification problem, see [Zafer Barutcuoglu et. al 2006]). Kaggle data set is representative of the problem: https://www.kaggle.com/jhoward/nb-svm-strong-linear-baseline/data.
Several other interesting problem in text anaVk
Industrialized Capsule Net for Text Analytics by Dr. Vijay Agneeswaran & Abhishek Kumar #ODSC_India
Multi-label text classification is an interesting problem where multiple tags or categories may have to be associated with the given text/documents. Multi-label text classification occurs in numerous real-world scenarios, for instance, in news categorization…
Машинное обучение
#video
🎥 Лекция 1 | Машинное обучение | Сергей Николенко | Лекториум
👁 2 раз ⏳ 5396 сек.
🎥 Лекция 2 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 4251 сек.
🎥 Лекция 3 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 3352 сек.
🎥 Лекция 4 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 6109 сек.
🎥 Лекция 5 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 5170 сек.
🎥 Лекция 6 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 5297 сек.
#video
🎥 Лекция 1 | Машинное обучение | Сергей Николенко | Лекториум
👁 2 раз ⏳ 5396 сек.
Лекция 1 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...🎥 Лекция 2 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 4251 сек.
Лекция 2 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...🎥 Лекция 3 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 3352 сек.
Лекция 3 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...🎥 Лекция 4 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 6109 сек.
Лекция 4 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...🎥 Лекция 5 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 5170 сек.
Лекция 5 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...🎥 Лекция 6 | Машинное обучение | Сергей Николенко | Лекториум
👁 1 раз ⏳ 5297 сек.
Лекция 6 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ
Смотрите это виде...Vk
Лекция 1 | Машинное обучение | Сергей Николенко | Лекториум
Лекция 1 | Курс: Машинное обучение | Лектор: Сергей Николенко | Организатор: Математическая лаборатория имени П.Л.Чебышева СПбГУ Смотрите это виде...
рименение R для утилитарных задач
#Data Mining
Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных задач. Ниже пара подобных примеров. Уверен, что многие могут этот список расширить.
https://habr.com/ru/post/464849/
🔗 Применение R для утилитарных задач
Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных зад...
#Data Mining
Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных задач. Ниже пара подобных примеров. Уверен, что многие могут этот список расширить.
https://habr.com/ru/post/464849/
🔗 Применение R для утилитарных задач
Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных зад...
Хабр
Применение R для утилитарных задач
Хороший инструмент + наличие навыков работы с ним, что достигается путем практики, позволяет легко и элегантно решать множество различных «как бы» нетипичных задач. Ниже пара подобных примеров....
Visualizing Eigenvalues and Eigenvectors
🔗 Visualizing Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors are a very important concept in Linear Algebra and Machine Learning in general. In my previous article, I’ve…
🔗 Visualizing Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors are a very important concept in Linear Algebra and Machine Learning in general. In my previous article, I’ve…
Medium
Visualizing Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors are a very important concept in Linear Algebra and Machine Learning in general. In my previous article, I’ve…
15 книг по машинному обучению для начинающих
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как.
Добавляйте в закладки и делитесь с коллегами!
https://habr.com/ru/post/464871/
🔗 15 книг по машинному обучению для начинающих
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как. Добавляйте в закладки и делитесь с коллегами! Книги по машинному обучению...
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как.
Добавляйте в закладки и делитесь с коллегами!
https://habr.com/ru/post/464871/
🔗 15 книг по машинному обучению для начинающих
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как. Добавляйте в закладки и делитесь с коллегами! Книги по машинному обучению...
Хабр
15 книг по машинному обучению для начинающих
Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как. Добавляйте в закладки и делитесь с коллегами! Книги по машинному обучению на русском 1. «Математические основы...
Eric Weinstein: Struggle Mightily but Give Yourself a Break | AI Podcast Clips
🔗 Eric Weinstein: Struggle Mightily but Give Yourself a Break | AI Podcast Clips
This is a clip from a conversation with Eric Weinstein on the Artificial Intelligence podcast. You can watch the full conversation here: http://bit.ly/2Hp8due If you enjoy these, consider subscribing, sharing, and commenting below. Full episode: http://bit.ly/2Hp8due Full episodes playlist: http://bit.ly/2EcbaKf Clips playlist: http://bit.ly/2JYkbfZ Podcast website: https://lexfridman.com/ai Eric Weinstein is a mathematician, economist, physicist, and managing director of Thiel Capital. He formed the "int
🔗 Eric Weinstein: Struggle Mightily but Give Yourself a Break | AI Podcast Clips
This is a clip from a conversation with Eric Weinstein on the Artificial Intelligence podcast. You can watch the full conversation here: http://bit.ly/2Hp8due If you enjoy these, consider subscribing, sharing, and commenting below. Full episode: http://bit.ly/2Hp8due Full episodes playlist: http://bit.ly/2EcbaKf Clips playlist: http://bit.ly/2JYkbfZ Podcast website: https://lexfridman.com/ai Eric Weinstein is a mathematician, economist, physicist, and managing director of Thiel Capital. He formed the "int
YouTube
Eric Weinstein: Struggle Mightily but Give Yourself a Break | AI Podcast Clips
This is a clip from a conversation with Eric Weinstein on the Artificial Intelligence podcast. You can watch the full conversation here: http://bit.ly/2Hp8due If you enjoy these, consider subscribing, sharing, and commenting below.
Full episode: http://bit.ly/2Hp8due…
Full episode: http://bit.ly/2Hp8due…