Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Multithreading In Python | Python Multithreading Tutorial | Python Tutorial
https://www.youtube.com/watch?v=JnFfp81VbOs

🎥 Multithreading In Python | Python Multithreading Tutorial | Python Tutorial For Beginners | Edureka
👁 1 раз 1428 сек.
** Python Certification Training: https://www.edureka.co/python **
This Edureka Live video on 'Multithreading in Python'' will help you understand the concept of threading in python. Below are the topics covered in this live video:

What is multitasking in Python?
Types of multitasking
What is a thread?
How to achieve multithreading in Python?
When to use multithreading?
How to create threads in Python?
Advantages of multithreading

Python Tutorial Playlist: https://goo.gl/WsBpKe
Blog Series: http://bit.
🎥 Kaggle Reading Group: Generating Long Sequences with Sparse Transformers | Kaggle
👁 4 раз 3625 сек.
Join Kaggle Data Scientist Rachael as she reads through an NLP paper! Today's paper is "Generating Long Sequences with Sparse Transformers" (Child et al, unpublished). You can find a copy here: https://arxiv.org/pdf/1904.10509.pdf

SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_...

About Kaggle:
Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project.
🎥 Lesson 8. Convolutional Neural Networks (practice 1)
👁 1 раз 1281 сек.
Lecturer: Gregory Leleytner (ML & DL Researcher at PSAMI MIPT)

Materials: http://bit.ly/2HHuanD

---

About Deep Learning School at PSAMI MIPT

Official website: https://www.dlschool.org
Github-repo: https://github.com/DLSchool/dlschool_english

About PSAMI MIPT

Official website: https://mipt.ru/english/edu/phystechschools/psami
Bachelor's program at PASMI MIPT: http://cs-mipt.ru
Online Master's program at PASMI MIPT: https://mipt.ru/education/departments/fpmi/master/contemporary-combinatoric
Two-year
🎥 TWiML x Fast ai v3 Deep Learning Part 2 Study Group - Lesson 15 - Spring 2019 1080p
👁 2 раз 4053 сек.
**SUBSCRIBE AND TURN ON NOTIFICATIONS** **twimlai.com**

This video is a recap of our TWiML Online Study Group.

In this session, we had a mini presentation on "Imagenet-Trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness" and discussion.

It’s not too late to join the study group. Just follow these simple steps:

1. Head over to twimlai.com/meetup, and sign up for the programs you're interested in, including either of the Fast.ai study groups or our Monthly Meetu
​Wolfram Engine теперь открыт для разработчиков (перевод)

21 мая 2019 Wolfram Researh объявили о том, что они дали доступ к Wolfram Engine для всех разработчиков софта. Вы можете скачать его и использовать в своих некоммерческих проектах по ссылке

Свободный Wolfram Engine для разработчиков дает им возможность использовать Wolfram Language в любом стеке разработки. Wolfram Language, который доступен в виде песочницы — это это мультипарадигмальный вычислительный язык, лежащий в основе самых известных продуктов Wolfram: Mathematica и Wolfram Alpha. Бесплатный Wolfram Engine также имеет полный доступ к базе знаний Wolfram и ее предварительно подготовленным нейронным сетям. Но для его использования вам необходимо оформить бесплатную подписку на Wolfram Cloud.
https://habr.com/ru/post/453074/

🔗 Wolfram Engine теперь открыт для разработчиков (перевод)
21 мая 2019 Wolfram Researh объявили о том, что они дали доступ к Wolfram Engine для всех разработчиков софта. Вы можете скачать его и использовать в своих неком...
​Neural Talking Head Models
https://arxiv.org/abs/1905.08233

🔗 Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
Several recent works have shown how highly realistic human head images can be obtained by training convolutional neural networks to generate them. In order to create a personalized talking head model, these works require training on a large dataset of images of a single person. However, in many practical scenarios, such personalized talking head models need to be learned from a few image views of a person, potentially even a single image. Here, we present a system with such few-shot capability. It performs lengthy meta-learning on a large dataset of videos, and after that is able to frame few- and one-shot learning of neural talking head models of previously unseen people as adversarial training problems with high capacity generators and discriminators. Crucially, the system is able to initialize the parameters of both the generator and the discriminator in a person-specific way, so that training can be based on just a few images and done quickly, despite the need to tune tens of millions of parameters. We sh
🎥 Machine Learning on Source Code | Egor Bulychev | ML Conference 2018
👁 1 раз 2048 сек.
Egor Bulychev (source|{d}) | https://mlconference.ai/speaker/egor-bulychev/

Machine Learning on Source Code (MLoSC) is an emerging and exciting domain of research which stands at the sweet spot between deep learning, natural language processing, social science and programming. We’ve accumulated petabytes of source code data that is open, yet there have been few attempts to fully leverage the knowledge that is sealed inside. This talk gives an introduction into the current trends in MLoSC and presents the t
🎥 Kick-Start your Understanding of Machine Learning with Python | ML Con 2018 Spring
👁 1 раз 1797 сек.
Dr. Andreas Bühlmeier (Dr. Bühlmeier Consulting) | https://mlconference.ai/speaker/dr-andreas-buhlmeier/

This presentation shows how to quickly build Machine Learning applications with Python and how we can understand what is happening ‘under the hood’ using Python modules as well. Two examples will be presented: unsupervised and supervised learning for text classification.

It is fascinating how fast you can build a text analyzer with Python and Scikit to then apply unsupervised learning. A common approac
🎥 Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang & Yong Tang
👁 1 раз 1746 сек.
Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang, Ant Financial & Yong Tang, MobileIron

The focus of this talk is the usage of Kubernetes operators to manage and automate training process for machine learning tasks. Two open source Kubernetes operators, tf-operator and mpi-operator, will be discussed. Both operators manage training jobs for TensorFlow but they have different distribution strategies. The tf-operator fits the parameter server distribution strategy which has a cent
🎥 Machine Learning Tutorial | What is Machine Learning | Intellipaat
👁 1 раз 16065 сек.
Intellipaat Machine Learning Course: https://intellipaat.com/machine-learning-certification-training-course/
In this machine learning tutorial you will learn what is machine learning, machine learning algorithms like linear regression, binary classification, decision tree, random forest and unsupervised algorithm like k means clustering in detail with complete hands on demo.

Following topics are covered in this video:
00:53 - what is machine learning
04:55 - what is linear regression
20:55 - what is regres