Нейронные сети и глубокое обучение (deep learning)
Глава 1. Что такое нейронная сеть?
Глава 2. Как учатся нейронные сети? Метод градиентного спуска.
Глава 3. Что такое метод обратного распространения ошибки и что он на самом деле делает?
Глава 3. (Приложение) Расчет обратного распространения.
#video #neural
🎥 But what *is* a Neural Network? | Deep learning, chapter 1
👁 5645 раз ⏳ 1153 сек.
🎥 Gradient descent, how neural networks learn | Deep learning, chapter 2
👁 1437 раз ⏳ 1261 сек.
🎥 What is backpropagation really doing? | Deep learning, chapter 3
👁 602 раз ⏳ 834 сек.
🎥 Backpropagation calculus | Deep learning, chapter 4
👁 610 раз ⏳ 618 сек.
Глава 1. Что такое нейронная сеть?
Глава 2. Как учатся нейронные сети? Метод градиентного спуска.
Глава 3. Что такое метод обратного распространения ошибки и что он на самом деле делает?
Глава 3. (Приложение) Расчет обратного распространения.
#video #neural
🎥 But what *is* a Neural Network? | Deep learning, chapter 1
👁 5645 раз ⏳ 1153 сек.
Subscribe to stay notified about new videos: http://3b1b.co/subscribe
Support more videos like this on Patreon: https://www.patreon.com/3blue1brown...🎥 Gradient descent, how neural networks learn | Deep learning, chapter 2
👁 1437 раз ⏳ 1261 сек.
Subscribe for more (part 3 will be on backpropagation): http://3b1b.co/subscribe
Funding provided by Amplify Partners and viewers like you.
https:/...🎥 What is backpropagation really doing? | Deep learning, chapter 3
👁 602 раз ⏳ 834 сек.
What's actually happening to a neural network as it learns?
Next video: https://youtu.be/tIeHLnjs5U8
Training data generation: http://3b1b.co/crowd...🎥 Backpropagation calculus | Deep learning, chapter 4
👁 610 раз ⏳ 618 сек.
This one is a bit more symbol heavy, and that's actually the point. The goal here is to represent in somewhat more formal terms the intuition for ...Vk
But what *is* a Neural Network? | Deep learning, chapter 1
Subscribe to stay notified about new videos: http://3b1b.co/subscribe Support more videos like this on Patreon: https://www.patreon.com/3blue1brown...
‘Safety First’: Steganography for Encrypting Data Transfers
🔗 ‘Safety First’: Steganography for Encrypting Data Transfers
Data is the foundation with which a business is formed and their future is modeled. However, with a rise in data intrusion and…
🔗 ‘Safety First’: Steganography for Encrypting Data Transfers
Data is the foundation with which a business is formed and their future is modeled. However, with a rise in data intrusion and…
Towards Data Science
‘Safety First’: Steganography for Encrypting Data Transfers
Data is the foundation with which a business is formed and their future is modeled. However, with a rise in data intrusion and…
What is Cognitive Computing? How are Enterprises benefitting from Cognitive Technology?
🔗 What is Cognitive Computing? How are Enterprises benefitting from Cognitive Technology?
AI has truly been a far-flung goal ever since the conception of computing, and every day we seem to be getting closer and closer to that…
🔗 What is Cognitive Computing? How are Enterprises benefitting from Cognitive Technology?
AI has truly been a far-flung goal ever since the conception of computing, and every day we seem to be getting closer and closer to that…
Towards Data Science
What is Cognitive Computing? How are Enterprises benefitting from Cognitive Technology?
AI has truly been a far-flung goal ever since the conception of computing, and every day we seem to be getting closer and closer to that…
🎥 Re-engineering Brain-Machine Interfaces to Optimize Control and Learning
👁 1 раз ⏳ 4846 сек.
👁 1 раз ⏳ 4846 сек.
Direct interfaces with the brain provide exciting new ways to restore and repair neurological function. For instance, motor Brain-Machine Interfaces (BMIs) can bypass a paralyzed person’s injury by repurpose intact portions of their brain to control movements. Recent work shows that BMIs do not simply “decode” subjects’ intentions—they create new systems subjects learn to control. To improve BMI performance and usability, we must therefore better understand learning and control in these systems. I will presVk
Re-engineering Brain-Machine Interfaces to Optimize Control and Learning
Direct interfaces with the brain provide exciting new ways to restore and repair neurological function. For instance, motor Brain-Machine Interfaces (BMIs) can bypass a paralyzed person’s injury by repurpose intact portions of their brain to control movements.…
🎥 Machine Learning Systems for Highly Distributed and Rapidly Growing Data
👁 1 раз ⏳ 3650 сек.
👁 1 раз ⏳ 3650 сек.
The usability and practicality of machine learning are largely influenced by two critical factors: low latency and low cost. However, achieving low latency and low cost is very challenging when machine learning depends on real-world data that are rapidly growing and highly distributed (e.g., training a face recognition model using pictures stored across many data centers globally).
In this talk, I will present my work on building low-latency and low-cost machine learning systems that enable efficient procVk
Machine Learning Systems for Highly Distributed and Rapidly Growing Data
The usability and practicality of machine learning are largely influenced by two critical factors: low latency and low cost. However, achieving low latency and low cost is very challenging when machine learning depends on real-world data that are rapidly…
Ищем свободное парковочное место с Python
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям будет сложно к вам заехать, ведь им будет негде припарковаться.
Поэтому я решил направить камеру в окно и использовать глубокое обучение, чтобы мой компьютер сообщал мне, когда освободится место
https://habr.com/ru/post/451164/
🔗 Ищем свободное парковочное место с Python
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у в...
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям будет сложно к вам заехать, ведь им будет негде припарковаться.
Поэтому я решил направить камеру в окно и использовать глубокое обучение, чтобы мой компьютер сообщал мне, когда освободится место
https://habr.com/ru/post/451164/
🔗 Ищем свободное парковочное место с Python
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у в...
Хабр
Ищем свободное парковочное место с Python
Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям...
🎥 Welcome to the world of Machine Learning with ML.NET 1.0 - BRK3011
👁 1 раз ⏳ 3691 сек.
👁 1 раз ⏳ 3691 сек.
ML.NET is a free, cross-platform, and open source machine learning framework for .NET developers. It is also an extensible platform that powers Microsoft services like Windows Hello, Bing Ads, PowerPoint Design Ideas, and more. This session focuses on the release of ML.NET 1.0. If you want to learn the basics about machine learning and how to develop and integrate custom machine learning models into your applications, this demo-rich session is made for you!Vk
Welcome to the world of Machine Learning with ML.NET 1.0 - BRK3011
ML.NET is a free, cross-platform, and open source machine learning framework for .NET developers. It is also an extensible platform that powers Microsoft services like Windows Hello, Bing Ads, PowerPoint Design Ideas, and more. This session focuses on the…
🎥 Machine Learning Fairness: Lessons Learned (Google I/O'19)
👁 1 раз ⏳ 2183 сек.
👁 1 раз ⏳ 2183 сек.
ML fairness is a critical consideration in machine learning development. This session will present a few lessons Google has learned through our products and research and how developers can apply these learnings in their own efforts. Techniques and resources will be presented that enable evaluation and improvements to models, including open source datasets and tools such as TensorFlow Model Analysis. This session will enable developers to proactively think about fairness in product development.
Watch more #Vk
Machine Learning Fairness: Lessons Learned (Google I/O'19)
ML fairness is a critical consideration in machine learning development. This session will present a few lessons Google has learned through our products and research and how developers can apply these learnings in their own efforts. Techniques and resources…
An End-to-End AutoML Solution for Tabular Data at KaggleDays
http://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
🔗 An End-to-End AutoML Solution for Tabular Data at KaggleDays
Posted by Yifeng Lu, Software Engineer, Google AI Machine learning (ML) for tabular data (e.g. spreadsheet data) is one of the most acti...
http://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
🔗 An End-to-End AutoML Solution for Tabular Data at KaggleDays
Posted by Yifeng Lu, Software Engineer, Google AI Machine learning (ML) for tabular data (e.g. spreadsheet data) is one of the most acti...
Googleblog
An End-to-End AutoML Solution for Tabular Data at KaggleDays
TensorFlow Graphics
PyPI project status Travis build status Code coverage Supported Python version PyPI release version
The last few years have seen a rise in novel differentiable graphics layers which can be inserted in neural network architectures. From spatial transformers to differentiable graphics renderers, these new layers leverage the knowledge acquired over years of computer vision and graphics research to build new and more efficient network architectures. Explicitly modeling geometric priors and constraints into neural networks opens up the door to architectures that can be trained robustly, efficiently, and more importantly, in a self-supervised fashion.
https://github.com/tensorflow/graphics/
🔗 tensorflow/graphics
TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow - tensorflow/graphics
PyPI project status Travis build status Code coverage Supported Python version PyPI release version
The last few years have seen a rise in novel differentiable graphics layers which can be inserted in neural network architectures. From spatial transformers to differentiable graphics renderers, these new layers leverage the knowledge acquired over years of computer vision and graphics research to build new and more efficient network architectures. Explicitly modeling geometric priors and constraints into neural networks opens up the door to architectures that can be trained robustly, efficiently, and more importantly, in a self-supervised fashion.
https://github.com/tensorflow/graphics/
🔗 tensorflow/graphics
TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow - tensorflow/graphics
GitHub
GitHub - tensorflow/graphics: TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow
TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow - tensorflow/graphics
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=ADYZmf7GvOw
🎥 Keras/TensorFlow 2.0, NLP with SQuAd, Spark SQL Expressions - Advanced Spark TensorFlow Meetup - SF
👁 1 раз ⏳ 6533 сек.
https://www.youtube.com/watch?v=ADYZmf7GvOw
🎥 Keras/TensorFlow 2.0, NLP with SQuAd, Spark SQL Expressions - Advanced Spark TensorFlow Meetup - SF
👁 1 раз ⏳ 6533 сек.
Agenda
* Meetup Updates and Announcements - 4 Years and 230 Events!
* Intro Grammarly (Umayah Abdennabi, 5 mins)
* Meetup Updates and Announcements (Chris, 5 mins)
* Custom Functions in Spark SQL (30 mins)
Speaker: Umayah Abdennabi
Spark comes with a rich Expression library that can be extended to make custom expressions. We will look into custom expressions and why you would want to use them.
* TF 2.0 + Keras (30 mins)
Speaker: Francesco Mosconi
Tensorflow 2.0 was announced at the March TF Dev Summit, aYouTube
Keras/TensorFlow 2.0, NLP with SQuAd, Spark SQL Expressions - Advanced Spark TensorFlow Meetup - SF
Agenda * Meetup Updates and Announcements - 4 Years and 230 Events! * Intro Grammarly (Umayah Abdennabi, 5 mins) * Meetup Updates and Announcements (Chris, 5...
🎥 56 - Машинное обучение. Отбор признаков в несколько итераций. Часть 1
👁 1 раз ⏳ 425 сек.
👁 1 раз ⏳ 425 сек.
Лектор: Артём Шевляков
https://stepik.org/8057Vk
56 - Машинное обучение. Отбор признаков в несколько итераций. Часть 1
Лектор: Артём Шевляков
https://stepik.org/8057
https://stepik.org/8057
Building Gmail style smart compose with a char ngram language model
🔗 Building Gmail style smart compose with a char ngram language model
“OpenAI built a language model so good, it’s considered too dangerous to release” — Techcrunch
🔗 Building Gmail style smart compose with a char ngram language model
“OpenAI built a language model so good, it’s considered too dangerous to release” — Techcrunch
Towards Data Science
Building Gmail style smart compose with a char ngram language model
“OpenAI built a language model so good, it’s considered too dangerous to release” — Techcrunch
🎥 22. GAN'ы и SuperResolution: Сергей Овчаренко (Яндекс)
👁 23 раз ⏳ 4588 сек.
👁 23 раз ⏳ 4588 сек.
Уважаемые слушатели!
В своей лекции Сергей Овчаренко (руководитель группы Нейросетевых технологий Службы компьютерного зрения, Яндекс) подробно рассказывает про различные архитектуры генеративных состязательных нейросетей (Generative Adversarial Networks), а также про их применение в задаче улучшения качества изображений и видео (SuperResolution). С примером их работы можно ознакомиться здесь: https://yandex.ru/blog/company/oldfilms
Презентация доступна по ссылке: https://bit.ly/2YkVAX1
---
Deep LearninVk
22. GAN'ы и SuperResolution: Сергей Овчаренко (Яндекс)
Уважаемые слушатели!
В своей лекции Сергей Овчаренко (руководитель группы Нейросетевых технологий Службы компьютерного зрения, Яндекс) подробно рассказывает про различные архитектуры генеративных состязательных нейросетей (Generative Adversarial Networks)…
В своей лекции Сергей Овчаренко (руководитель группы Нейросетевых технологий Службы компьютерного зрения, Яндекс) подробно рассказывает про различные архитектуры генеративных состязательных нейросетей (Generative Adversarial Networks)…
How Negative Sampling work on word2vec?
🔗 How Negative Sampling work on word2vec?
During neural network training, it always adjust all neuron weight so that it learn how to do the prediction correctly. In NLP, we may…
🔗 How Negative Sampling work on word2vec?
During neural network training, it always adjust all neuron weight so that it learn how to do the prediction correctly. In NLP, we may…
Towards Data Science
How Negative Sampling work on word2vec?
During neural network training, it always adjust all neuron weight so that it learn how to do the prediction correctly. In NLP, we may…
🎥 Machine Learning Part 16: Naive Bayes Classifier In Python
👁 1 раз ⏳ 802 сек.
👁 1 раз ⏳ 802 сек.
In this video, we cover the naive bayes classifier and walk through an example in python.
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medium.com/@corymaklin
GitHub: https://github.com/corymaklin
Twitter: https://twitter.com/CoryMaklin
Linkedin: https://www.linkedin.com/in/cory-maklin-a51732b7/
Facebook: https://www.facebook.com/cory.maklin
Patreon: https://www.patreon.com/corymaklinVk
Machine Learning Part 16: Naive Bayes Classifier In Python
In this video, we cover the naive bayes classifier and walk through an example in python.
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medium.com/@corymaklin
GitHub: https://github.com/corymaklin
Twitter: https://twitter.com/CoryMaklin
Linkedin:…
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medium.com/@corymaklin
GitHub: https://github.com/corymaklin
Twitter: https://twitter.com/CoryMaklin
Linkedin:…
🎥 What is Data Science ? How to Become a Data Scientist ? | Data Science for Beginners
👁 1 раз ⏳ 1739 сек.
👁 1 раз ⏳ 1739 сек.
Hi,
I'm Kaish Ansari and in this video I've have covered all the topics regarding What is Data Science ? How to Become a Data Scientist ?
I have covered why data science is so trending now a days and how someone can become a data scientist.
I've covered about the dataset available around us.
This video tutorial also contains information about various platforms where one can learn about machine learning and mathematics for data science!
Like we have khan academy for mathematics
and coursera or udacity forVk
What is Data Science ? How to Become a Data Scientist ? | Data Science for Beginners
Hi,
I'm Kaish Ansari and in this video I've have covered all the topics regarding What is Data Science ? How to Become a Data Scientist ?
I have covered why data science is so trending now a days and how someone can become a data scientist.
I've covered…
I'm Kaish Ansari and in this video I've have covered all the topics regarding What is Data Science ? How to Become a Data Scientist ?
I have covered why data science is so trending now a days and how someone can become a data scientist.
I've covered…
Discovering the essential tools for Named Entities Recognition
🔗 Discovering the essential tools for Named Entities Recognition
It’s all about the names!
🔗 Discovering the essential tools for Named Entities Recognition
It’s all about the names!
Towards Data Science
Discovering the essential tools for Named Entities Recognition
It’s all about the names!
https://arxiv.org/abs/1905.00507
🔗 Learning higher-order sequential structure with cloned HMMs
Variable order sequence modeling is an important problem in artificial and natural intelligence. While overcomplete Hidden Markov Models (HMMs), in theory, have the capacity to represent long-term temporal structure, they often fail to learn and converge to local minima. We show that by constraining HMMs with a simple sparsity structure inspired by biology, we can make it learn variable order sequences efficiently. We call this model cloned HMM (CHMM) because the sparsity structure enforces that many hidden states map deterministically to the same emission state. CHMMs with over 1 billion parameters can be efficiently trained on GPUs without being severely affected by the credit diffusion problem of standard HMMs. Unlike n-grams and sequence memoizers, CHMMs can model temporal dependencies at arbitrarily long distances and recognize contexts with "holes" in them. Compared to Recurrent Neural Networks, CHMMs are generative models that can natively deal with uncertainty. Moreover, CHMMs return a higher-order graph that represents the temporal structure of the data which can be useful for community detection, and for building hierarchical models. Our experiments show that CHMMs can beat n-grams, sequence memoizers, and LSTMs on character-level language modeling tasks. CHMMs can be a viable alternative to these methods in some tasks that require variable order sequence modeling and the handling of uncertainty.
🔗 Learning higher-order sequential structure with cloned HMMs
Variable order sequence modeling is an important problem in artificial and natural intelligence. While overcomplete Hidden Markov Models (HMMs), in theory, have the capacity to represent long-term temporal structure, they often fail to learn and converge to local minima. We show that by constraining HMMs with a simple sparsity structure inspired by biology, we can make it learn variable order sequences efficiently. We call this model cloned HMM (CHMM) because the sparsity structure enforces that many hidden states map deterministically to the same emission state. CHMMs with over 1 billion parameters can be efficiently trained on GPUs without being severely affected by the credit diffusion problem of standard HMMs. Unlike n-grams and sequence memoizers, CHMMs can model temporal dependencies at arbitrarily long distances and recognize contexts with "holes" in them. Compared to Recurrent Neural Networks, CHMMs are generative models that can natively deal with uncertainty. Moreover, CHMMs return a higher-order graph that represents the temporal structure of the data which can be useful for community detection, and for building hierarchical models. Our experiments show that CHMMs can beat n-grams, sequence memoizers, and LSTMs on character-level language modeling tasks. CHMMs can be a viable alternative to these methods in some tasks that require variable order sequence modeling and the handling of uncertainty.
arXiv.org
Learning higher-order sequential structure with cloned HMMs
Variable order sequence modeling is an important problem in artificial and natural intelligence. While overcomplete Hidden Markov Models (HMMs), in theory, have the capacity to represent long-term...
💥 Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups
🔗 💥 Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups
Training neural networks with larger batches in PyTorch: gradient accumulation, gradient checkpointing, multi-GPUs and distributed setups…
🔗 💥 Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups
Training neural networks with larger batches in PyTorch: gradient accumulation, gradient checkpointing, multi-GPUs and distributed setups…
Medium
💥 Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups
Training neural networks with larger batches in PyTorch: gradient accumulation, gradient checkpointing, multi-GPUs and distributed setups…