April Edition: Reinforcement Learning
🔗 April Edition: Reinforcement Learning
How to Build an Actual Artificial Intelligence Agent
🔗 April Edition: Reinforcement Learning
How to Build an Actual Artificial Intelligence Agent
Towards Data Science
April Edition: Reinforcement Learning
How to Build an Actual Artificial Intelligence Agent
Support Vector Machines — Soft Margin Formulation and Kernel Trick
🔗 Support Vector Machines — Soft Margin Formulation and Kernel Trick
Learn some of the advanced concepts that make Support Vector Machine a powerful linear classifier
🔗 Support Vector Machines — Soft Margin Formulation and Kernel Trick
Learn some of the advanced concepts that make Support Vector Machine a powerful linear classifier
Towards Data Science
Support Vector Machines — Soft Margin Formulation and Kernel Trick
Learn some of the advanced concepts that make Support Vector Machine a powerful linear classifier
Deep Learning on Ancient DNA
🔗 Deep Learning on Ancient DNA
Reconstructing the Human Past with Deep Learning
🔗 Deep Learning on Ancient DNA
Reconstructing the Human Past with Deep Learning
Towards Data Science
Deep Learning on Ancient DNA
Reconstructing the Human Past with Deep Learning
Python for Finance: Robo Advisor Edition
🔗 Python for Finance: Robo Advisor Edition
Extending Stock Portfolio Analyses and Dash by Plotly to track Robo Advisor-like Portfolios.
🔗 Python for Finance: Robo Advisor Edition
Extending Stock Portfolio Analyses and Dash by Plotly to track Robo Advisor-like Portfolios.
Towards Data Science
Python for Finance: Robo Advisor Edition
Extending Stock Portfolio Analyses and Dash by Plotly to track Robo Advisor-like Portfolios.
Mining of Massive Datasets
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
#book
#datamining
📝 4_123287577397560264.pdf - 💾3 052 181
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
#book
#datamining
📝 4_123287577397560264.pdf - 💾3 052 181
Mining of Massive Datasets
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
#book
#datamining
📝 4_123287577397560264.pdf - 💾3 052 181
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
#book
#datamining
📝 4_123287577397560264.pdf - 💾3 052 181
BoTorch: Bayesian Optimization in PyTorch
https://github.com/pytorch/botorch
🔗 BoTorch · Bayesian Optimization in PyTorch
Bayesian Optimization in PyTorch
https://github.com/pytorch/botorch
🔗 BoTorch · Bayesian Optimization in PyTorch
Bayesian Optimization in PyTorch
GitHub
GitHub - pytorch/botorch: Bayesian optimization in PyTorch
Bayesian optimization in PyTorch. Contribute to pytorch/botorch development by creating an account on GitHub.
Data Science for Startups: Containers
🔗 Data Science for Startups: Containers
Building reproducible setups for machine learning
🔗 Data Science for Startups: Containers
Building reproducible setups for machine learning
Towards Data Science
Data Science for Startups: Containers
Building reproducible setups for machine learning
A Gentle Introduction to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
🔗 A Gentle Introduction to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
The rise in popularity and use of deep learning neural network techniques can be traced back to the innovations in the application of convolutional neural networks to image classification tasks. Some of the most important innovations have sprung from submissions by academics and industry leaders to the ImageNet Large Scale Visual Recognition Challenge, or ILSVRC. …
🔗 A Gentle Introduction to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
The rise in popularity and use of deep learning neural network techniques can be traced back to the innovations in the application of convolutional neural networks to image classification tasks. Some of the most important innovations have sprung from submissions by academics and industry leaders to the ImageNet Large Scale Visual Recognition Challenge, or ILSVRC. …
MachineLearningMastery.com
A Gentle Introduction to the ImageNet Challenge (ILSVRC) - MachineLearningMastery.com
The rise in popularity and use of deep learning neural network techniques can be traced back to the innovations in the application of convolutional neural networks to image classification tasks.
Some of the most important innovations have sprung from submissions…
Some of the most important innovations have sprung from submissions…
Машинное обучение. МФТИ.
Лекция 1. Временные ряды: введение.
Лекция 2. Экспоненциальное сглаживание
Лекция 3. ARMA/ARIMA.
Доп. главы-4. Композиции алгоритмов,Иерархическое прогнозирование, Нейронные сети
Доп. главы. Лекция 5. Методы обучения ранжированию.
Доп. главы. Лекция 7. Тематическое моделирование
Доп.главы. Лекция 8. RL. Введение. Эволюционные алгоритмы
Доп. главы. Лекция 9. RL. Temporal Difference
Доп. главы. Лекция 10. Approximate reinforcement learning
🎥 Машинное обучение. Доп. главы. Лекция 1. Временные ряды введение.
👁 2836 раз ⏳ 4558 сек.
🎥 Машинное обучение: доп. главы 2. Экспоненциальное сглаживание
👁 79 раз ⏳ 4849 сек.
🎥 Машинное обучение: доп. главы 3. ARMA/ARIMA.
👁 55 раз ⏳ 4241 сек.
🎥 Машинное обучение: доп. главы 4. Композиции алгоритмов, Иерархическое прогнозирование
👁 42 раз ⏳ 4563 сек.
🎥 Машинное обучение: доп. главы 5. Методы обучения ранжированию.
👁 26 раз ⏳ 3937 сек.
🎥 Машинное обучение: доп. главы 7. Тематическое моделирование
👁 20 раз ⏳ 3873 сек.
🎥 Машинное обучение: доп.главы 8. RL. Введение. Эволюционные алгоритмы
👁 24 раз ⏳ 4861 сек.
🎥 Машинное обучение: доп. главы 9. RL. Temporal Difference
👁 25 раз ⏳ 3903 сек.
Лекция 1. Временные ряды: введение.
Лекция 2. Экспоненциальное сглаживание
Лекция 3. ARMA/ARIMA.
Доп. главы-4. Композиции алгоритмов,Иерархическое прогнозирование, Нейронные сети
Доп. главы. Лекция 5. Методы обучения ранжированию.
Доп. главы. Лекция 7. Тематическое моделирование
Доп.главы. Лекция 8. RL. Введение. Эволюционные алгоритмы
Доп. главы. Лекция 9. RL. Temporal Difference
Доп. главы. Лекция 10. Approximate reinforcement learning
🎥 Машинное обучение. Доп. главы. Лекция 1. Временные ряды введение.
👁 2836 раз ⏳ 4558 сек.
🎥 Машинное обучение: доп. главы 2. Экспоненциальное сглаживание
👁 79 раз ⏳ 4849 сек.
Лектор: Романенко А.А.🎥 Машинное обучение: доп. главы 3. ARMA/ARIMA.
👁 55 раз ⏳ 4241 сек.
Лектор: Романенко А.А.🎥 Машинное обучение: доп. главы 4. Композиции алгоритмов, Иерархическое прогнозирование
👁 42 раз ⏳ 4563 сек.
Лектор: Романенко А.А.🎥 Машинное обучение: доп. главы 5. Методы обучения ранжированию.
👁 26 раз ⏳ 3937 сек.
Лектор: Зухба А.В.🎥 Машинное обучение: доп. главы 7. Тематическое моделирование
👁 20 раз ⏳ 3873 сек.
Лектор: Зухба А.В.🎥 Машинное обучение: доп.главы 8. RL. Введение. Эволюционные алгоритмы
👁 24 раз ⏳ 4861 сек.
Лектор: Малых В.А.🎥 Машинное обучение: доп. главы 9. RL. Temporal Difference
👁 25 раз ⏳ 3903 сек.
Лектор: Малых В.А.🎥 Artificial Intelligence and Machine Learning in MSK Radiology
👁 1 раз ⏳ 3185 сек.
👁 1 раз ⏳ 3185 сек.
Howard Steinbach MD memorial lecture delivered by Dr. Beaulieu on April 17, 2019, at UCSF Medical Center. Includes a general tutorial on machine learning that many radiologists may find useful. Thanks to several colleagues acknowledged throughout the talk who shared slides!Vk
Artificial Intelligence and Machine Learning in MSK Radiology
Howard Steinbach MD memorial lecture delivered by Dr. Beaulieu on April 17, 2019, at UCSF Medical Center. Includes a general tutorial on machine learning that many radiologists may find useful. Thanks to several colleagues acknowledged throughout the talk…
Data Science for Startups: Containers
🔗 Data Science for Startups: Containers
Building reproducible setups for machine learning
🔗 Data Science for Startups: Containers
Building reproducible setups for machine learning
Towards Data Science
Data Science for Startups: Containers
Building reproducible setups for machine learning
Achieving a top 5% position in an ML competition with AutoML
🔗 Achieving a top 5% position in an ML competition with AutoML
AutoML pipelines are a hot topic. The general goal is simple: enable everyone to train high-quality models specific to their business…
🔗 Achieving a top 5% position in an ML competition with AutoML
AutoML pipelines are a hot topic. The general goal is simple: enable everyone to train high-quality models specific to their business…
Towards Data Science
Achieving a top 5% position in an ML competition with AutoML
AutoML pipelines are a hot topic. The general goal is simple: enable everyone to train high-quality models specific to their business…
🎥 Rise of Deep Learning - the driver of modern AI Online Webinar
👁 1 раз ⏳ 3794 сек.
👁 1 раз ⏳ 3794 сек.
ANNs are the most critical algorithms belonging to the most recent, and most sophisticated, branch of Machine Learning, called the Deep Learning.
Deep Learning and ANNs have revolutionized modern Artificial Intelligence and are responsible for incredible global disruption. Image Processors, Content Generators, Driverless Cars, Speech Assistants, Walking and Talking Robots, Stock Market Predictors and all such modern AI applications are driven by Deep Learning Neural Networks.
This session will introduce yVk
Rise of Deep Learning - the driver of modern AI Online Webinar
ANNs are the most critical algorithms belonging to the most recent, and most sophisticated, branch of Machine Learning, called the Deep Learning.
Deep Learning and ANNs have revolutionized modern Artificial Intelligence and are responsible for incredible…
Deep Learning and ANNs have revolutionized modern Artificial Intelligence and are responsible for incredible…
🎥 Tutorial 2019 || Deep Learning with Python, TensorFlow, and Keras tutorial
👁 1 раз ⏳ 1155 сек.
👁 1 раз ⏳ 1155 сек.
Tutorial 2019 || Deep Learning with Python, TensorFlow, and Keras tutorialVk
Tutorial 2019 || Deep Learning with Python, TensorFlow, and Keras tutorial
🎥 Tutorial 2019 || Cryptocurrency-predicting RNN intro - Deep Learning w/ Python, TensorFlow and Keras
👁 1 раз ⏳ 1234 сек.
👁 1 раз ⏳ 1234 сек.
Tutorial 2019 || Cryptocurrency-predicting RNN intro - Deep Learning w/ Python, TensorFlow and Keras p.8Vk
Tutorial 2019 || Cryptocurrency-predicting RNN intro - Deep Learning w/ Python, TensorFlow and Keras
Tutorial 2019 || Cryptocurrency-predicting RNN intro - Deep Learning w/ Python, TensorFlow and Keras p.8
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://towardsdatascience.com/the-relationship-between-biological-and-artificial-intelligence-aeaf5fb93e19?source=collection_home---4------1---------------------
🔗 The relationship between Biological and Artificial Intelligence
Critical review of the claims of brain/neuroscience inspiration in AI, especially Artificial Neural Networks
https://towardsdatascience.com/the-relationship-between-biological-and-artificial-intelligence-aeaf5fb93e19?source=collection_home---4------1---------------------
🔗 The relationship between Biological and Artificial Intelligence
Critical review of the claims of brain/neuroscience inspiration in AI, especially Artificial Neural Networks
PyTorch 1.1
https://github.com/pytorch/pytorch/releases/tag/v1.1.0
- Tensorboard (beta);
- DistributedDataParallel new functionality and tutorials;
- Multi-headed attention;
- EmbeddingBag enhancements;
- Other cool, but more niche features:
- nn.SyncBatchNorm;
- optim.lr_scheduler.CyclicLR;
🔗 pytorch/pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/pytorch
https://github.com/pytorch/pytorch/releases/tag/v1.1.0
- Tensorboard (beta);
- DistributedDataParallel new functionality and tutorials;
- Multi-headed attention;
- EmbeddingBag enhancements;
- Other cool, but more niche features:
- nn.SyncBatchNorm;
- optim.lr_scheduler.CyclicLR;
🔗 pytorch/pytorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/pytorch
GitHub
Release Official TensorBoard Support, Attributes, Dicts, Lists and User-defined types in JIT / TorchScript, Improved Distributed…
Note: CUDA 8.0 is no longer supported
Highlights
TensorBoard (currently experimental)
First-class and native support for visualization and model debugging with TensorBoard, a web application suite ...
Highlights
TensorBoard (currently experimental)
First-class and native support for visualization and model debugging with TensorBoard, a web application suite ...