https://arxiv.org/abs/1904.06236
🔗 Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans.
🔗 Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans.
OpenAI GPT-2: An Almost Too Good Text Generator
🔗 OpenAI GPT-2: An Almost Too Good Text Generator
❤️ Support the show and pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers 📝 The paper "Better Language Models and Their Implica...
🔗 OpenAI GPT-2: An Almost Too Good Text Generator
❤️ Support the show and pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers 📝 The paper "Better Language Models and Their Implica...
YouTube
OpenAI GPT-2: An Almost Too Good Text Generator!
❤️ Support the show and pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
📝 The paper "Better Language Models and Their Implications" is available here:
https://openai.com/blog/better-language-models/
GPT-2 Reddit bot:
htt…
📝 The paper "Better Language Models and Their Implications" is available here:
https://openai.com/blog/better-language-models/
GPT-2 Reddit bot:
htt…
🎥 Arm A64fx and Post-K: Game-Changing CPU & Supercomputer for HPC
👁 1 раз ⏳ 1891 сек.
👁 1 раз ⏳ 1891 сек.
In this video from the HPC User Forum, Satoshi Matsuoka from RIKEN presents: Arm A64fx and Post-K: Game-Changing CPU & Supercomputer for HPC and its Convergence with Big Data / AI.
"With rapid rise and increase of Big Data and AI as a new breed of high-performance workloads on supercomputers, we need to accommodate them at scale, and thus the need for R&D for HW and SW Infrastructures where traditional simulation-based HPC and BD/AI would converge, in a BYTES-oriented fashion. Post-K is the flagship nextVk
Arm A64fx and Post-K: Game-Changing CPU & Supercomputer for HPC
In this video from the HPC User Forum, Satoshi Matsuoka from RIKEN presents: Arm A64fx and Post-K: Game-Changing CPU & Supercomputer for HPC and its Convergence with Big Data / AI.
"With rapid rise and increase of Big Data and AI as a new breed of high-performance…
"With rapid rise and increase of Big Data and AI as a new breed of high-performance…
🎥 Face Recogntion with OpenCV and Deep Learning in Python
👁 1 раз ⏳ 2446 сек.
👁 1 раз ⏳ 2446 сек.
#face_recognition #deeplearning #python
In this new session, we are going to learn how to perform face recognition in both images and video streams using: OpenCV, Python, and Deep Learning.
We’ll start with a brief discussion of how deep learning-based facial recognition works, including the concept of “deep metric learning”. From there, I will help you install the libraries you need to actually perform face recognition. Finally, we’ll implement face recognition for both still images and video streams.
ToVk
Face Recogntion with OpenCV and Deep Learning in Python
#face_recognition #deeplearning #python
In this new session, we are going to learn how to perform face recognition in both images and video streams using: OpenCV, Python, and Deep Learning.
We’ll start with a brief discussion of how deep learning-based facial…
In this new session, we are going to learn how to perform face recognition in both images and video streams using: OpenCV, Python, and Deep Learning.
We’ll start with a brief discussion of how deep learning-based facial…
🎥 Introduction to Tensorflow 2.0 | Tensorflow 2.0 Features and Changes | Edureka
👁 1 раз ⏳ 831 сек.
👁 1 раз ⏳ 831 сек.
***AI and Deep Learning with TensorFlow - https://www.edureka.co/ai-deep-learning-with-tensorflow ***
This video will provide you with a short and summarized knowledge of tensorflow 2.0 alpha, what all changes have been made and how is it better from the previous version.
--------------------------------------------------
About the course:
Edureka's Deep Learning in TensorFlow with Python Certification Training is curated by industry professionals as per the industry requirements & demands. You will masVk
Introduction to Tensorflow 2.0 | Tensorflow 2.0 Features and Changes | Edureka
***AI and Deep Learning with TensorFlow - https://www.edureka.co/ai-deep-learning-with-tensorflow ***
This video will provide you with a short and summarized knowledge of tensorflow 2.0 alpha, what all changes have been made and how is it better from the…
This video will provide you with a short and summarized knowledge of tensorflow 2.0 alpha, what all changes have been made and how is it better from the…
L2 Regularization and Batch Norm
🔗 L2 Regularization and Batch Norm
This blog post is about an interesting detail about machine learningthat I came across as a researcher at Jane Street - that of the interaction between L2 re...
🔗 L2 Regularization and Batch Norm
This blog post is about an interesting detail about machine learningthat I came across as a researcher at Jane Street - that of the interaction between L2 re...
Jane Street Blog
L2 Regularization and Batch Norm
This blog post is about an interesting detail about machine learningthat I came across as a researcher at Jane Street - that of the interaction between L2 re...
Машинное обучение для менеджеров: таинство сепуления
Очередной раз работая с компанией, делающей проект, связанный с машинным обучением (ML), я обратил внимание, что менеджеры используют термины из области ML, не понимая их сути. Хотя слова произносятся грамматически правильно и в нужных местах предложений, однако их смысл им не более ясен, чем назначение сепулек, которые, как известно, применяются в сепулькариях для сепуления. В тоже время тимлидам и простым разрабам кажется, что они говорят с менеджментом на одном языке, что и приводит к конфликтным ситуациям, так осложняющим работу над проектом. Итак, данная статья посвящена приемам фасилитации (с латинского: упрощение или облегчение) общения разработчиков с менеджментом или тому, как просто и доходчиво объяснить базовые термины ML, приведя тем самым ваш проект к успеху. Если вам близка эта тема — добро пожаловать под кат.
https://habr.com/ru/post/447094/
🔗 Машинное обучение для менеджеров: таинство сепуления
Введение Очередной раз работая с компанией, делающей проект, связанный с машинным обучением (ML), я обратил внимание, что менеджеры используют термины из области...
Очередной раз работая с компанией, делающей проект, связанный с машинным обучением (ML), я обратил внимание, что менеджеры используют термины из области ML, не понимая их сути. Хотя слова произносятся грамматически правильно и в нужных местах предложений, однако их смысл им не более ясен, чем назначение сепулек, которые, как известно, применяются в сепулькариях для сепуления. В тоже время тимлидам и простым разрабам кажется, что они говорят с менеджментом на одном языке, что и приводит к конфликтным ситуациям, так осложняющим работу над проектом. Итак, данная статья посвящена приемам фасилитации (с латинского: упрощение или облегчение) общения разработчиков с менеджментом или тому, как просто и доходчиво объяснить базовые термины ML, приведя тем самым ваш проект к успеху. Если вам близка эта тема — добро пожаловать под кат.
https://habr.com/ru/post/447094/
🔗 Машинное обучение для менеджеров: таинство сепуления
Введение Очередной раз работая с компанией, делающей проект, связанный с машинным обучением (ML), я обратил внимание, что менеджеры используют термины из области...
Хабр
Машинное обучение для менеджеров: таинство сепуления
Введение Очередной раз работая с компанией, делающей проект, связанный с машинным обучением (ML), я обратил внимание, что менеджеры используют термины из области...
Avik-Jain/100-Days-Of-ML-Code
🔗 Avik-Jain/100-Days-Of-ML-Code
100 Days of ML Coding. Contribute to Avik-Jain/100-Days-Of-ML-Code development by creating an account on GitHub.
🔗 Avik-Jain/100-Days-Of-ML-Code
100 Days of ML Coding. Contribute to Avik-Jain/100-Days-Of-ML-Code development by creating an account on GitHub.
GitHub
GitHub - Avik-Jain/100-Days-Of-ML-Code: 100 Days of ML Coding
100 Days of ML Coding. Contribute to Avik-Jain/100-Days-Of-ML-Code development by creating an account on GitHub.
🎥 [Коллоквиум] Математика больших данных тензоры, нейросети, байесовский вывод - Ветров Д.П.
👁 30715 раз ⏳ 4414 сек.
👁 30715 раз ⏳ 4414 сек.
How to build a Recommendation Engine quick and simple
🔗 How to build a Recommendation Engine quick and simple
Part 1: an introduction, how to get to production in a week and where to go after that
🔗 How to build a Recommendation Engine quick and simple
Part 1: an introduction, how to get to production in a week and where to go after that
Towards Data Science
How to build a Recommendation Engine quick and simple
Part 1: an introduction, how to get to production in a week and where to go after that
The Complete Beginner’s Guide to Machine Learning: Multiple Linear Regression in 4 Lines of Code!
🔗 The Complete Beginner’s Guide to Machine Learning: Multiple Linear Regression in 4 Lines of Code!
Conquer the basics of multiple linear regression (and backward elimination!) and use your data to predict the future!
🔗 The Complete Beginner’s Guide to Machine Learning: Multiple Linear Regression in 4 Lines of Code!
Conquer the basics of multiple linear regression (and backward elimination!) and use your data to predict the future!
Towards Data Science
The Complete Beginner’s Guide to Machine Learning: Multiple Linear Regression in 4 Lines of Code!
Conquer the basics of multiple linear regression (and backward elimination!) and use your data to predict the future!
Take Your Best Selfie Automatically, with Photobooth on Pixel 3
http://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html
🔗 Take Your Best Selfie Automatically, with Photobooth on Pixel 3
Posted by Navid Shiee, Senior Software Engineer and Aseem Agarwala, Staff Research Scientist, Google AI Taking a good group selfie can b...
http://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html
🔗 Take Your Best Selfie Automatically, with Photobooth on Pixel 3
Posted by Navid Shiee, Senior Software Engineer and Aseem Agarwala, Staff Research Scientist, Google AI Taking a good group selfie can b...
Googleblog
Take Your Best Selfie Automatically, with Photobooth on Pixel 3
Chatbots aren’t as difficult to make as You Think
🔗 Chatbots aren’t as difficult to make as You Think
A Darth Vader Guide to building Chatbots
🔗 Chatbots aren’t as difficult to make as You Think
A Darth Vader Guide to building Chatbots
Towards Data Science
Chatbots aren’t as difficult to make as You Think
A Darth Vader Guide to building Chatbots
Explaining probability plots
🔗 Explaining probability plots
In this article I would like to explain the concept of probability plots — what they are, how to implement them in Python and how to…
🔗 Explaining probability plots
In this article I would like to explain the concept of probability plots — what they are, how to implement them in Python and how to…
Towards Data Science
Explaining probability plots
In this article I would like to explain the concept of probability plots — what they are, how to implement them in Python and how to…
Data Science Digest (April 2019)
🔗 Data Science Digest (April 2019)
Хабр, привет! В марте я восстановил публикацию на Хабре дайджеста посвященного ML и Data Science. Сегодня я подготовил свежую подборку интересных ссылок, а т...
🔗 Data Science Digest (April 2019)
Хабр, привет! В марте я восстановил публикацию на Хабре дайджеста посвященного ML и Data Science. Сегодня я подготовил свежую подборку интересных ссылок, а т...
Хабр
Data Science Digest (April 2019)
Хабр, привет! В марте я восстановил публикацию на Хабре дайджеста посвященного ML и Data Science. Сегодня я подготовил свежую подборку интересных ссылок, а также анонсирую запуск...
SNA Hackathon 2019 — итоги
🔗 SNA Hackathon 2019 — итоги
1-го апреля завершился финал SNA Hackathon 2019, участники которого соревновались в сортировке ленты социальной сети с использованием современных технологий маш...
🔗 SNA Hackathon 2019 — итоги
1-го апреля завершился финал SNA Hackathon 2019, участники которого соревновались в сортировке ленты социальной сети с использованием современных технологий маш...
Хабр
SNA Hackathon 2019 — итоги
1-го апреля завершился финал SNA Hackathon 2019, участники которого соревновались в сортировке ленты социальной сети с использованием современных технологий машинного обучения, компьютерного зрения,...
Play with #GAN(Generative Adversarial Networks) in your browser and better understand what's going on inside network
https://poloclub.github.io/ganlab/?fbclid=IwAR1xl1kmA4DflkXShjbufAD4EUOW6O9TxFcoBPI-DWHClIR4UhSD566d4XY
🔗 GAN Lab: Play with Generative Adversarial Networks in Your Browser!
https://poloclub.github.io/ganlab/?fbclid=IwAR1xl1kmA4DflkXShjbufAD4EUOW6O9TxFcoBPI-DWHClIR4UhSD566d4XY
🔗 GAN Lab: Play with Generative Adversarial Networks in Your Browser!