Generalizable Deep Reinforcement Learning
🔗 Generalizable Deep Reinforcement Learning
What Google AI’s PlaNet AI means for reinforcement learning research and how transfer learning plays a key role
🔗 Generalizable Deep Reinforcement Learning
What Google AI’s PlaNet AI means for reinforcement learning research and how transfer learning plays a key role
Towards Data Science
Everything you need to know about Google’s new PlaNet reinforcement learning network
What Google AI’s PlaNet AI means for reinforcement learning research and how transfer learning plays a key role
Насколько точно Яндекс прогнозирует осадки зимой? Анализируем точность прогностических сервисов
🔗 Насколько точно Яндекс прогнозирует осадки зимой? Анализируем точность прогностических сервисов
В ноябре я публиковал статью «Яндекс.Метеум – технология без технологии. Маркетинг с точностью до района», где соотносил качество прогнозов Яндекса с другими сер...
🔗 Насколько точно Яндекс прогнозирует осадки зимой? Анализируем точность прогностических сервисов
В ноябре я публиковал статью «Яндекс.Метеум – технология без технологии. Маркетинг с точностью до района», где соотносил качество прогнозов Яндекса с другими сер...
Хабр
Насколько точно Яндекс прогнозирует осадки зимой? Анализируем точность прогностических сервисов
В ноябре я публиковал статью «Яндекс.Метеум – технология без технологии. Маркетинг с точностью до района» , где соотносил качество прогнозов Яндекса с другими сервиса. Акцент делался на температуре,...
Step Change Improvement in Molecular Property Prediction with PotentialNet
🔗 Step Change Improvement in Molecular Property Prediction with PotentialNet
TL;DR: Pande Lab in collaboration with Merck shows marked increase in ADMET Prediction accuracy with PotentialNet
🔗 Step Change Improvement in Molecular Property Prediction with PotentialNet
TL;DR: Pande Lab in collaboration with Merck shows marked increase in ADMET Prediction accuracy with PotentialNet
Medium
Step Change Improvement in Molecular Property Prediction with PotentialNet
TL;DR: Pande Lab in collaboration with Merck shows marked increase in ADMET Prediction accuracy with PotentialNet
🎥 TensorFlow 2.0 - Introductory Tutorial
👁 3 раз ⏳ 588 сек.
👁 3 раз ⏳ 588 сек.
TensorFlow 2.0 is here! Let's take a look at a simple tutorial on the basics of TensorFlow.
The code is available at the GitHub repository for the series:
If you do have any questions with what we covered in this video then feel free to ask in the comment section below & I'll do my best to answer those.
If you enjoy these tutorials & would like to support them then the easiest way is to simply like the video & give it a thumbs up & also it's a huge help to share these videos with anyone who you think wouVk
TensorFlow 2.0 - Introductory Tutorial
TensorFlow 2.0 is here! Let's take a look at a simple tutorial on the basics of TensorFlow.
The code is available at the GitHub repository for the series:
If you do have any questions with what we covered in this video then feel free to ask in the comment…
The code is available at the GitHub repository for the series:
If you do have any questions with what we covered in this video then feel free to ask in the comment…
Unsupervised Learning | DeepMind
🔗 Unsupervised Learning | DeepMind
Unsupervised learning is a paradigm designed to create autonomous intelligence by rewarding computer programs for learning about the data they observe without a particular task in mind--in other words, the program learns for the sake of learning. We believe unsupervised learning will be foundational to building artificial general intelligence.
🔗 Unsupervised Learning | DeepMind
Unsupervised learning is a paradigm designed to create autonomous intelligence by rewarding computer programs for learning about the data they observe without a particular task in mind--in other words, the program learns for the sake of learning. We believe unsupervised learning will be foundational to building artificial general intelligence.
Google DeepMind
Unsupervised learning: The curious pupil
Over the last decade, machine learning has made unprecedented progress in areas as diverse as image recognition, self-driving cars and playing complex games like Go. These successes have been...
🎥 Product Innovation Keynote (Cloud Next '19)
👁 1 раз ⏳ 6252 сек.
👁 1 раз ⏳ 6252 сек.
Hear about Google Cloud's latest solution innovations across security, infrastructure, Maps, data analytics, ML & AI, G Suite, and more.
Accelerating Machine Learning App Development → https://bit.ly/2TZfO60
Next ‘19 All Sessions playlist → https://bit.ly/Next19AllSessions
Subscribe to the GCP Channel → https://bit.ly/GCloudPlatform
Speaker(s): Justin Arbuckle, Michael Heim, Urs Hölzle, Thomas Kurian, Amy Lokey, , Binu Mathew,
Moderator: Sarah Patterson
Panelists: Rajen Sheth, Karen Van Kirk
SessionVk
Product Innovation Keynote (Cloud Next '19)
Hear about Google Cloud's latest solution innovations across security, infrastructure, Maps, data analytics, ML & AI, G Suite, and more.
Accelerating Machine Learning App Development → https://bit.ly/2TZfO60
Next ‘19 All Sessions playlist → https://bi…
Accelerating Machine Learning App Development → https://bit.ly/2TZfO60
Next ‘19 All Sessions playlist → https://bi…
Reviewing Python Visualization Packages
🔗 Reviewing Python Visualization Packages
Which solutions are good in which situations?
🔗 Reviewing Python Visualization Packages
Which solutions are good in which situations?
Towards Data Science
Reviewing Python Visualization Packages
Which solutions are good in which situations?
Introducing LinkedIn’s Avro2TF
🔗 Introducing LinkedIn’s Avro2TF
A New Feature Transformation Framework for TensorFlow
🔗 Introducing LinkedIn’s Avro2TF
A New Feature Transformation Framework for TensorFlow
Towards Data Science
Introducing LinkedIn’s Avro2TF
A New Feature Transformation Framework for TensorFlow
Vaex: A DataFrame with super-strings
🔗 Vaex: A DataFrame with super-strings
Speed up your text processing up to a 1000x
🔗 Vaex: A DataFrame with super-strings
Speed up your text processing up to a 1000x
Towards Data Science
Vaex: A DataFrame with super strings
Speed up your text processing up to a 1000x
🎥 GitHub and Deep Learning on Graphs of Code - Clair Sullivan, GitHub
👁 1 раз ⏳ 1011 сек.
👁 1 раз ⏳ 1011 сек.
GitHub is presently hosts approximately 0.5 PB of data on open source code. These data include the code itself and the various contributions to it, such as commits, pull requests, issues, comments, and users. A great deal of information can be learned about code and the open source community that creates it.
KEY TAKEAWAYS
- How can graphs of code be used to obtain information about software and open source development?
- What are appropriate methods for deep learning on such graphs?
- Best-in-class methodsVk
GitHub and Deep Learning on Graphs of Code - Clair Sullivan, GitHub
GitHub is presently hosts approximately 0.5 PB of data on open source code. These data include the code itself and the various contributions to it, such as commits, pull requests, issues, comments, and users. A great deal of information can be learned about…
🎥 Introduction to Deep Learning 4 8 19
👁 1 раз ⏳ 4855 сек.
👁 1 раз ⏳ 4855 сек.
Vk
Introduction to Deep Learning 4 8 19
vk.com video
How to Design Powerful Scripts in Genetics
🔗 How to Design Powerful Scripts in Genetics
User input and Command Line Arguments made Simple- with Python
🔗 How to Design Powerful Scripts in Genetics
User input and Command Line Arguments made Simple- with Python
Towards Data Science
How to Design Powerful Scripts in Genetics
User input and Command Line Arguments made Simple- with Python
🎥 L19/7 Gated Recurrent Unit in Python
👁 1 раз ⏳ 930 сек.
👁 1 раз ⏳ 930 сек.
Dive into Deep Learning
UC Berkeley, STAT 157
Slides are at
http://courses.d2l.ai
The book is at
http://www.d2l.ai
Gated Recurrent Unit in Python (both from scratch and Gluon version)Vk
L19/7 Gated Recurrent Unit in Python
Dive into Deep Learning
UC Berkeley, STAT 157
Slides are at
http://courses.d2l.ai
The book is at
http://www.d2l.ai
Gated Recurrent Unit in Python (both from scratch and Gluon version)
UC Berkeley, STAT 157
Slides are at
http://courses.d2l.ai
The book is at
http://www.d2l.ai
Gated Recurrent Unit in Python (both from scratch and Gluon version)
🎥 Serverless and Open-Source Machine Learning at Sling Media (Cloud Next '19)
👁 1 раз ⏳ 2190 сек.
👁 1 раз ⏳ 2190 сек.
Join us to learn about Sling’s incremental adoption strategy of serverless GCP technologies to enable data scientists and engineers to deliver business value quickly. As one example, we will walk through our journey of (1) using deep learning techniques to better predict churn, (2) developing a traditional pipeline to serve the model, and (3) enhancing the pipeline to be serverless and scalable using open-source technologies and managed GCP services. We will share best practices and lessons learned deployinVk
Serverless and Open-Source Machine Learning at Sling Media (Cloud Next '19)
Join us to learn about Sling’s incremental adoption strategy of serverless GCP technologies to enable data scientists and engineers to deliver business value quickly. As one example, we will walk through our journey of (1) using deep learning techniques to…
What's So Hard About Cloth Simulations?
🔗 What's So Hard About Cloth Simulations?
📝 The paper "I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation" is available here: https://min-tang.github.io/home/ICloth/ ❤...
🔗 What's So Hard About Cloth Simulations?
📝 The paper "I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation" is available here: https://min-tang.github.io/home/ICloth/ ❤...
YouTube
Why Are Cloth Simulations So Hard?
📝 The paper "I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation" is available here:
https://min-tang.github.io/home/ICloth/
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like…
https://min-tang.github.io/home/ICloth/
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like…
🎥 Artificial Intelligence (AI) Interview Questions and Answers | AI Interview Preparation | Edureka
👁 1 раз ⏳ 6369 сек.
👁 1 раз ⏳ 6369 сек.
(** Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training **)
This video on Artificial Intelligence Interview Questions covers all the important concepts involved in the field of AI. This video is ideal for both beginners as well as professionals who want to learn or brush up their knowledge on AI concepts. Below are the topics covered in this tutorial:
1. Artificial Intelligence Basic Level Interview Question
2. Artificial Intelligence InterVk
Artificial Intelligence (AI) Interview Questions and Answers | AI Interview Preparation | Edureka
(** Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training **)
This video on Artificial Intelligence Interview Questions covers all the important concepts involved in the field of AI. This video…
This video on Artificial Intelligence Interview Questions covers all the important concepts involved in the field of AI. This video…
Яндекс вручил молодым ученым и научным руководителям первые премии имени Ильи Сегаловича
🔗 Яндекс вручил молодым ученым и научным руководителям первые премии имени Ильи Сегаловича
Вчера, 10 апреля, в московском офисе Яндекса наградили первых лауреатов премии имени Ильи Сегаловича, созданной в этом году для поддержки молодых исследователей...
🔗 Яндекс вручил молодым ученым и научным руководителям первые премии имени Ильи Сегаловича
Вчера, 10 апреля, в московском офисе Яндекса наградили первых лауреатов премии имени Ильи Сегаловича, созданной в этом году для поддержки молодых исследователей...
Хабр
Яндекс вручил молодым ученым и научным руководителям первые премии имени Ильи Сегаловича
Вчера, 10 апреля, в московском офисе Яндекса наградили первых лауреатов премии имени Ильи Сегаловича, созданной в этом году для поддержки молодых исследователей и научного сообщества России, Беларуси...