Neural Networks | Нейронные сети
11.6K subscribers
801 photos
182 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=aq0AhbvxBkc

🎥 Augmenting Mental Health Care in the Digital Age: Machine Learning as a Therapist Assistant
👁 1 раз 1220 сек.
Speaker: Niels Bantilian, Machine Learning Engineer at Talkspace

Slides: https://www.slideshare.net/SessionsEvents/niels-bantilan-augmenting-mental-health-care-in-the-digital-age-machine-learning-as-a-therapist-assistant

"Digital messaging services provide significant benefits in behavioral healthcare in terms of accessibility, affordability, and scale, while providing a complete record of interactions between clients and therapists over the course of treatment. The Talkspace platform allows therapists to
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

https://www.youtube.com/watch?v=M1iKFlERRWk

🎥 Deep Learning Applications to Online Payment Fraud Detection
👁 1 раз 1727 сек.
Speaker: Nitin Sharma

Slides: https://www.slideshare.net/SessionsEvents/nitin-sharma-deep-learning-applications-to-online-payment-fraud-detection

The talk covers some applications and use-cases of deep neural network architectures applied to the problem of payments fraud detection. With the multi-fold objectives such as maximizing fraud catch rate while approving the good user volume reliably and quickly, the underlying problem formulation and considerations applicable to large-scale online payment transa
🎥 RI Seminar: Amir Barati Farimani : Creative Robots with Deep Reinforcement Learning
👁 1 раз 3649 сек.
Amir Barati Farimani
Assistant Professor
Mechanical Engineering, Carnegie Mellon University
April 5, 2019

Creative Robots with Deep Reinforcement Learning
Recent advances in Deep Reinforcement Learning (DRL) algorithms provided us with the possibility of adding intelligence to robots. Recently, we have been applying a variety of DRL algorithms to the tasks that modern control theory may not be able to solve. We observed intriguing creativity from robots when they are constrained in reaching a certain goal.
​Бесплатный курс
Introduction to Natural Language Processing

https://courses.analyticsvidhya.com/courses/Intro-to-NLP

🔗 Introduction to NLP
Natural Language Processing (NLP) is the art of extracting information from unstructured text. This course teaches you basics of NLP, Regular Expressions and Text Preprocessing.
🎥 Kaggle Live Coding: Intro to Machine Learning with R | Kaggle
👁 1 раз 3969 сек.
Join Kaggle Data Scientist Rachael as she works on data science projects! This week we're going to be walking through a sample machine learning pipeline in R.

SUBSCRIBE : http://www.youtube.com/user/kaggledot...

About Kaggle:
Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to get started on a new data science project. Spin up a Jupyter notebook with a single click. Build with our huge re
☑️Вакансия консультантом онлайн.
18+. Оплата сразу на карту от 1000р.
Не косметика. За подробностями обращаться к https://m.vk.com/id539273915 Татьяне
The Bitter Lesson - Compute Reigns Supreme
https://www.youtube.com/watch?v=wEgq6sT1uq8

🎥 The Bitter Lesson - Compute Reigns Supreme
👁 1 раз 551 сек.
📝 The article "The Bitter Lesson" is available here:
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers

🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bruno Brito, Bryan Learn, Christian Ahlin, Christoph Jadanowski, Claudio Fernandes, Dennis Abts, Eric Haddad, Eric Martel, Evan Bre
🎥 Провалы в решении задач по анализу данных
👁 2 раз 5055 сек.
В машинном обучении совершается всё больше прорывов, постоянно появляются новые методы, решаются новые задачи, запускаются новые продукты и сервисы. Создаётся ощущение, что задачи решаются сами — достаточно собрать данные и обучить модель, а дальше всё будет замечательно. Мы бы хотели напомнить нашим мини-воркшопом, что всё не так просто! Существует огромное количество способов провалить проект, связанный с анализом данных — и мы постараемся рассказать о некоторых из них.

– Валерий Бабушкин, X5 Retail Grou
🎥 Hadi Ghauch: Large-scale training for deep neural networks
👁 1 раз 3667 сек.
This talk will complement some of lectures in the course by combining large-scale learning, and deep neural networks (DNNs). We will start discuss some challenges for optimizing DNNs, namely, the complex loss surface, ill-conditioning, etc. We will then review some state-of-the-art training methods for DNNs, such as, backprop (review), stochastic gradient descent (review), and adaptive rate methods, RMSProp, ADAGrad, and ADAM.

This talk was a part of The Workshop on Fundamentals of Machine Learning Over N