🎥 KNN Algorithm in Machine Learning using Python from Scratch - Jupyter Python Machine Learning Course
👁 1 раз ⏳ 1159 сек.
👁 1 раз ⏳ 1159 сек.
This is the video tutorial#08 for Artificial Intelligence complete course from beginner to advanced level.
In this video you will learn about k nearest neighbour algorithm in machine learning and you will also learn how to implement k nearest neighbour algorithm in python with movies examples.
If anyone wants to support us, then please become a patreon: https://www.patreon.com/user/posts?u=22962224
Our other Channel, Please Subscribe: https://www.youtube.com/channel/UC44PcIfCeVGA21fbL_-qd9Q
Link to ourVk
KNN Algorithm in Machine Learning using Python from Scratch - Jupyter Python Machine Learning Course
This is the video tutorial#08 for Artificial Intelligence complete course from beginner to advanced level.
In this video you will learn about k nearest neighbour algorithm in machine learning and you will also learn how to implement k nearest neighbour algorithm…
In this video you will learn about k nearest neighbour algorithm in machine learning and you will also learn how to implement k nearest neighbour algorithm…
The Enterprise Big Data Lake
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 The Enterprise Big Data Lake Delivering the Promise of Big Data and Data Science by Alex Gorelik (z-lib.org).pdf - 💾11 027 598
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 The Enterprise Big Data Lake Delivering the Promise of Big Data and Data Science by Alex Gorelik (z-lib.org).pdf - 💾11 027 598
Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
https://nv-adlr.github.io/Flowtron/
https://arxiv.org/abs/2005.05957
🔗 Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
In this paper we propose Flowtron: an autoregressive flow-based generative network for text-to-speech synthesis with control over speech variation and style transfer. Flowtron borrows insights from IAF and revamps Tacotron in order to provide high-quality and expressive mel-spectrogram synthesis. Flowtron is optimized by maximizing the likelihood of the training data, which makes training simple and stable. Flowtron learns an invertible mapping of data to a latent space that can be manipulated to control many aspects of speech synthesis (pitch, tone, speech rate, cadence, accent). Our mean opinion scores (MOS) show that Flowtron matches state-of-the-art TTS models in terms of speech quality. In addition, we provide results on control of speech variation, interpolation between samples and style transfer between speakers seen and unseen during training. Code and pre-trained models will be made publicly available at https://github.com/NVIDIA/flowtron
https://nv-adlr.github.io/Flowtron/
https://arxiv.org/abs/2005.05957
🔗 Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
In this paper we propose Flowtron: an autoregressive flow-based generative network for text-to-speech synthesis with control over speech variation and style transfer. Flowtron borrows insights from IAF and revamps Tacotron in order to provide high-quality and expressive mel-spectrogram synthesis. Flowtron is optimized by maximizing the likelihood of the training data, which makes training simple and stable. Flowtron learns an invertible mapping of data to a latent space that can be manipulated to control many aspects of speech synthesis (pitch, tone, speech rate, cadence, accent). Our mean opinion scores (MOS) show that Flowtron matches state-of-the-art TTS models in terms of speech quality. In addition, we provide results on control of speech variation, interpolation between samples and style transfer between speakers seen and unseen during training. Code and pre-trained models will be made publicly available at https://github.com/NVIDIA/flowtron
NVIDIA ADLR
Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
Flowtron is an autoregressive flow-based generative network for text-to-speech synthesis with direct control over speech variation and style transfer
Jim Keller - Moore's Law in the age of AI Chips
https://www.youtube.com/watch?v=8eT1jaHmlx8
🎥 Jim Keller - Moore's Law in the age of AI Chips
👁 1 раз ⏳ 1866 сек.
https://www.youtube.com/watch?v=8eT1jaHmlx8
🎥 Jim Keller - Moore's Law in the age of AI Chips
👁 1 раз ⏳ 1866 сек.
For more talks and to view corresponding slides, go to scaledml.org, select [media archive].
Presented at the 5th Annual Scaled Machine Learning Conference 2020
Venue: Computer History Museum
scaledml.org | #scaledml2020YouTube
Jim Keller - Moore's Law in the age of AI Chips
For more talks and to view corresponding slides, go to scaledml.org, select [media archive].
Presented at the 5th Annual Scaled Machine Learning Conference 2020
Venue: Computer History Museum
scaledml.org | #scaledml2020
Presented at the 5th Annual Scaled Machine Learning Conference 2020
Venue: Computer History Museum
scaledml.org | #scaledml2020
Count people in webcam using pre-trained YOLOv3
🔗 Count people in webcam using pre-trained YOLOv3
Learn to use instance segmentation (YOLOv3) to count the number of people using its pre-trained weights with TensorFlow and OpenCV in…
🔗 Count people in webcam using pre-trained YOLOv3
Learn to use instance segmentation (YOLOv3) to count the number of people using its pre-trained weights with TensorFlow and OpenCV in…
Medium
Count people in webcam using pre-trained YOLOv3
Learn to use instance segmentation (YOLOv3) to count the number of people using its pre-trained weights with TensorFlow and OpenCV in…
курс "Вычисления на видеокартах"
введение в OpenCL
полный курс -https://www.youtube.com/playlist?list=PLlb7e2G7aSpTgwAm0GBkvn5XA0NokovJJ
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Лекция 1. История видеокарт, введение в OpenCL (Вычисления на видеокартах)
👁 1 раз ⏳ 5031 сек.
🎥 Лекция 2. Введение в OpenCL. Архитектура видеокарты (Вычисления на видеокартах)
👁 1 раз ⏳ 4335 сек.
🎥 Лекция 3. Примеры оптимизаций с local memory (Вычисления на видеокартах)
👁 1 раз ⏳ 4948 сек.
🎥 Лекция 4. Умножение матриц (Вычисления на видеокартах)
👁 1 раз ⏳ 5134 сек.
🎥 Лекция 5. Collision detection (Вычисления на видеокартах)
👁 1 раз ⏳ 4110 сек.
🎥 Лекция 6. Сортировки и collision detection 2 (Вычисления на видеокартах)
👁 1 раз ⏳ 4108 сек.
🎥 Лекция 7. Merge sort и Semi-Global Matching (Вычисления на видеокартах)
👁 1 раз ⏳ 4575 сек.
🎥 Лекция 8. Sparse matrices, poisson reconstruction, LUT (Вычисления на видеокартах)
👁 1 раз ⏳ 5739 сек.
🎥 Самая лучшая лекция: вариационные методы (Вычисления на видеокартах)
👁 1 раз ⏳ 5105 сек.
🎥 Лекция 10. Растеризация: OpenGL, Larrabee, cudaraster (Вычисления на видеокартах)
👁 1 раз ⏳ 5410 сек.
введение в OpenCL
полный курс -https://www.youtube.com/playlist?list=PLlb7e2G7aSpTgwAm0GBkvn5XA0NokovJJ
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Лекция 1. История видеокарт, введение в OpenCL (Вычисления на видеокартах)
👁 1 раз ⏳ 5031 сек.
Лекция №1 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: https://bit.ly/2CK3IdP🎥 Лекция 2. Введение в OpenCL. Архитектура видеокарты (Вычисления на видеокартах)
👁 1 раз ⏳ 4335 сек.
Лекция №2 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: https://bit.ly/2Ow3dW9🎥 Лекция 3. Примеры оптимизаций с local memory (Вычисления на видеокартах)
👁 1 раз ⏳ 4948 сек.
Лекция №3 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: https://bit.ly/2IdkyAH🎥 Лекция 4. Умножение матриц (Вычисления на видеокартах)
👁 1 раз ⏳ 5134 сек.
Лекция №4 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: https://bit.ly/2zMsJS2🎥 Лекция 5. Collision detection (Вычисления на видеокартах)
👁 1 раз ⏳ 4110 сек.
Лекция №5 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: https://bit.ly/2Ns1Ne1🎥 Лекция 6. Сортировки и collision detection 2 (Вычисления на видеокартах)
👁 1 раз ⏳ 4108 сек.
Лекция №6 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: ht...🎥 Лекция 7. Merge sort и Semi-Global Matching (Вычисления на видеокартах)
👁 1 раз ⏳ 4575 сек.
Лекция №7 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: ht...🎥 Лекция 8. Sparse matrices, poisson reconstruction, LUT (Вычисления на видеокартах)
👁 1 раз ⏳ 5739 сек.
Лекция № 8 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: ...🎥 Самая лучшая лекция: вариационные методы (Вычисления на видеокартах)
👁 1 раз ⏳ 5105 сек.
Variational methods:
Image denoising via Total Variation Minimization:
TV-L2 (ROF)
TV-L1
Image Super Resolution:
TV-L1
Huber model
2.5D surface re...🎥 Лекция 10. Растеризация: OpenGL, Larrabee, cudaraster (Вычисления на видеокартах)
👁 1 раз ⏳ 5410 сек.
Лекция № 10 в курсе "Вычисления на видеокартах" (осень 2018).
Преподаватель курса: Николай Вадимович Полярный
Страница лекции на сайте CS центра: ...YouTube
Вычисления на видеокартах (осень 2018)
Share your videos with friends, family, and the world
Google’s 7 steps of Machine Learning in practice: a TensorFlow example for structured data
🔗 Google’s 7 steps of Machine Learning in practice: a TensorFlow example for structured data
A step by step tutorial to put the 7 steps into practice and build a machine learning model from scratch.
🔗 Google’s 7 steps of Machine Learning in practice: a TensorFlow example for structured data
A step by step tutorial to put the 7 steps into practice and build a machine learning model from scratch.
Medium
The Google’s 7 steps of Machine Learning in practice: a TensorFlow example for structured data
A step by step tutorial to put the 7 steps into practice and build a machine learning model from scratch.
Natural Language Processing Advancements By Deep Learning: A Survey
🔗 Natural Language Processing Advancements By Deep Learning: A Survey
Introduction
🔗 Natural Language Processing Advancements By Deep Learning: A Survey
Introduction
Medium
Natural Language Processing Advancements By Deep Learning: A Survey
Introduction
Погружение в Delta Lake: принудительное применение и эволюция схемы
🔗 Погружение в Delta Lake: принудительное применение и эволюция схемы
Привет, Хабр! Представляю вашему вниманию перевод статьи «Diving Into Delta Lake: Schema Enforcement & Evolution» авторов Burak Yavuz, Brenner Heintz and Denny L...
🔗 Погружение в Delta Lake: принудительное применение и эволюция схемы
Привет, Хабр! Представляю вашему вниманию перевод статьи «Diving Into Delta Lake: Schema Enforcement & Evolution» авторов Burak Yavuz, Brenner Heintz and Denny L...
Хабр
Погружение в Delta Lake: принудительное применение и эволюция схемы
Привет, Хабр! Представляю вашему вниманию перевод статьи «Diving Into Delta Lake: Schema Enforcement & Evolution» авторов Burak Yavuz, Brenner Heintz and Denny Lee, который был подготовлен в...
🎥 Lecture #28: One hidden layer Neural Network | Deep Learning
👁 1 раз ⏳ 359 сек.
👁 1 раз ⏳ 359 сек.
Complete Course Deep Learning playlist: https://www.youtube.com/playlist?list=PL1w8k37X_6L95W33vEXSE9jXJOfvNB3l8
===============Best Books on Machine Learning :=================
1. Introduction to Machine Learning with Python: A Guide for Data Scientists: https://amzn.to/2TLlhAR
2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems: https://amzn.to/2wKtPij
3. Pattern Recognition and Machine Learning (Information Science and StatiVk
Lecture #28: One hidden layer Neural Network | Deep Learning
Complete Course Deep Learning playlist: https://www.youtube.com/playlist?list=PL1w8k37X_6L95W33vEXSE9jXJOfvNB3l8
===============Best Books on Machine Learning :=================
1. Introduction to Machine Learning with Python: A Guide for Data Scientists:…
===============Best Books on Machine Learning :=================
1. Introduction to Machine Learning with Python: A Guide for Data Scientists:…
🎥 Machine Learning for Asset Managers
👁 1 раз ⏳ 2067 сек.
👁 1 раз ⏳ 2067 сек.
Convex optimization solutions tend to be unstable, to the point of entirely offsetting the benefits of optimization. For example, in the context of financial applications, it is known that portfolios optimized in sample often underperform the naïve (equal weights) allocation out of sample.
This instability can be traced back to two sources: (1) noise in the input variables; and (2) signal structure that magnifies the estimation errors in the input variables.
There is abundant literature discussing noise iVk
Machine Learning for Asset Managers
Convex optimization solutions tend to be unstable, to the point of entirely offsetting the benefits of optimization. For example, in the context of financial applications, it is known that portfolios optimized in sample often underperform the naïve (equal…
🎥 Deep Learning - Convolutional Neural Networks Explained
👁 1 раз ⏳ 2756 сек.
👁 1 раз ⏳ 2756 сек.
Overview of how Convolutional Neural Networks (CNN) perform classification.
This type of Deep Learning is especially well suited working with images. As many of today's scenarios have images as base, CNNs have become one of the most important specializations of Neural Networks.
Instead of extracting features from images in a pre-processing step, CNNs usually work on the raw image data. Through training kernel matrices, they try to find structure and patterns in the image, which are then ultimately usefuVk
Deep Learning - Convolutional Neural Networks Explained
Overview of how Convolutional Neural Networks (CNN) perform classification.
This type of Deep Learning is especially well suited working with images. As many of today's scenarios have images as base, CNNs have become one of the most important specializations…
This type of Deep Learning is especially well suited working with images. As many of today's scenarios have images as base, CNNs have become one of the most important specializations…
Визуализация результатов профилирования питона
https://github.com/jiffyclub/snakeviz
🔗 jiffyclub/snakeviz
An in-browser Python profile viewer. Contribute to jiffyclub/snakeviz development by creating an account on GitHub.
https://github.com/jiffyclub/snakeviz
🔗 jiffyclub/snakeviz
An in-browser Python profile viewer. Contribute to jiffyclub/snakeviz development by creating an account on GitHub.
GitHub
GitHub - jiffyclub/snakeviz: An in-browser Python profile viewer
An in-browser Python profile viewer. Contribute to jiffyclub/snakeviz development by creating an account on GitHub.
Интерактивные эксперименты по машинному обучению (например, игра в камень-ножницы-бумага с компьютером).
🔗 trekhleb/machine-learning-experiments
🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo - trekhleb/machine-learning-experiments
🔗 trekhleb/machine-learning-experiments
🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo - trekhleb/machine-learning-experiments
GitHub
GitHub - trekhleb/machine-learning-experiments: 🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo
🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo - GitHub - trekhleb/machine-learning-experiments: 🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨model...
A Comprehensive Guide to Generative Adversarial Networks (GANs)
🔗 A Comprehensive Guide to Generative Adversarial Networks (GANs)
Generating Meaningful Data from Noise
🔗 A Comprehensive Guide to Generative Adversarial Networks (GANs)
Generating Meaningful Data from Noise
Medium
A Comprehensive Guide to Generative Adversarial Networks (GANs)
Generating Meaningful Data from Noise
Почему разрабатывать беспилотные автомобили интереснее, чем делать Алису?
🔗 Почему разрабатывать беспилотные автомобили интереснее, чем делать Алису?
ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате ж...
🔗 Почему разрабатывать беспилотные автомобили интереснее, чем делать Алису?
ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате ж...
Хабр
Что общего у дерзких ответов Алисы с беспилотными автомобилями?
ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате живого интервью в нашем...
Your Ultimate Data Mining & Machine Learning Cheat Sheet
🔗 Your Ultimate Data Mining & Machine Learning Cheat Sheet
Feature Importance, Decomposition, Transformation, & More
🔗 Your Ultimate Data Mining & Machine Learning Cheat Sheet
Feature Importance, Decomposition, Transformation, & More
Medium
Your Ultimate Data Mining & Machine Learning Cheat Sheet
Feature Importance, Decomposition, Transformation, & More
Перевод книги Эндрю Ына «Страсть к машинному обучению» Глава 58. Заключительная
🔗 Перевод книги Эндрю Ына «Страсть к машинному обучению» Глава 58. Заключительная
предыдущие главы Заключение 58. Создание супергероев — поделитесь с командой! Поздравляю с окончанием чтения этой книги! В главе 2 говорилось о том, что эта книг...
🔗 Перевод книги Эндрю Ына «Страсть к машинному обучению» Глава 58. Заключительная
предыдущие главы Заключение 58. Создание супергероев — поделитесь с командой! Поздравляю с окончанием чтения этой книги! В главе 2 говорилось о том, что эта книг...
Хабр
Перевод книги Эндрю Ына «Страсть к машинному обучению» Глава 58. Заключительная
предыдущие главы Заключение 58. Создание супергероев — поделитесь с командой! Поздравляю с окончанием чтения этой книги! В главе 2 говорилось о том, что эта книг...
🎥 How to Explain Text Models with IntepretML Deep Dive
👁 1 раз ⏳ 647 сек.
👁 1 раз ⏳ 647 сек.
Learn about InterpretML's new offering, Interpret-Text, which expands support to include text data with state-of-the-art explainers for NLP machine learning models such as BERT and RNNs.
Learn More:
Azure Blog https://aka.ms/AiShow/AzureBlog
Responsible ML https://aka.ms/AiShow/ResponsibleML
Azure ML https://aka.ms/AiShow/AzureMLResponsibleML
The AI Show's Favorite links:
Don't miss new episodes, subscribe to the AI Show https://aka.ms/aishowsubscribe
Create a Free account (Azure) https://aka.ms/aisVk
How to Explain Text Models with IntepretML Deep Dive
Learn about InterpretML's new offering, Interpret-Text, which expands support to include text data with state-of-the-art explainers for NLP machine learning models such as BERT and RNNs.
Learn More:
Azure Blog https://aka.ms/AiShow/AzureBlog
Responsible…
Learn More:
Azure Blog https://aka.ms/AiShow/AzureBlog
Responsible…
Natural Language Processing for IT Support Incident
🔗 Natural Language Processing for IT Support Incident
Learn how to leverage NLP to extract hot-spots from unstructured incidents
🔗 Natural Language Processing for IT Support Incident
Learn how to leverage NLP to extract hot-spots from unstructured incidents
Medium
Natural Language Processing for IT Support Incidents
Learn how to leverage NLP to extract hot-spots from unstructured incidents