Neural Networks | Нейронные сети
11.6K subscribers
805 photos
184 videos
170 files
9.46K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Применение детектора курения на транспорте

🔗 Применение детектора курения на транспорте
Ранее мы рассказывали про детекцию курения посредством объектовой видеоаналитики. Попробуем теперь рассмотреть практические аспекты применения данных решений и...
​Подбор экипировки игровому персу при помощи генетики/эволюции на Python

🔗 Подбор экипировки игровому персу при помощи генетики/эволюции на Python
Как подобрать лучшую экипировку в любимой игре? Конечно, можно банально перебрать все её возможные сочетания (например, для разбойника из World of Warcraft) и на...
​Yet More Google Compute Cluster Trace Data">
Yet More Google Compute Cluster Trace Data

🔗 Yet More Google Compute Cluster Trace Data
Posted by John Wilkes, Principal Software Engineer, Google Cloud Google’s Borg cluster management system supports our computational fle...
мой друг нашел схему заработка от 4000 в день
смотреть у меня на стене!
🎥 Data Science Live - 3 | Machine Learning Algorithms | ML Tutorial | Data Science Training | Edureka
👁 1 раз 2596 сек.
🔥 Data Science Master Program: https://www.edureka.co/masters-program/data-scientist-certification
This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a data-set for model creation and validation and how you can create a model using any machine learning algorithm!

Check our complete Data Science playlist here: https://bit.ly/2KEEFdf
----------------
🎥 Machine Learning: Deep Learning Hands-On with TensorFlow
👁 1 раз 3927 сек.
Hands-on coding with explanations: how to classify the breast cancer Wisconsin Dataset from Scikit-Learn with TensorFlow. Based on a JupyterLab (Jupyter Notebook) with Python 3.


Building a neural network with one hidden layer (8 nodes, ReLU activation) and one output node (Sigmoid activation).


As an intro after the previous theory module, network architectures are explained using the TensorFlow Playground.



Part of a Machine Learning & Deep Learning lecture series for Digital Healthcare at the St. Pöl
​Difference Between Algorithm and Model in Machine Learning - Machine Learning Mastery

🔗 Difference Between Algorithm and Model in Machine Learning - Machine Learning Mastery
Machine learning involves the use of machine learning algorithms and models. For beginners, this is very confusing as often
​ИИ: Дополняя завтрашний мир

🔗 ИИ: Дополняя завтрашний мир
Объем данных, генерируемых каждый день, намного превосходит возможности человеческого восприятия. И если мы планируем использовать этот объем более-менее осмысле...
​Учим нейросети в Google Таблицах

🔗 Учим нейросети в Google Таблицах
Хочу с вами зачелленджить одну интересную штуку: попробовать обучить нейросеть в Google Таблицах. Безо всяких макросов и прочих хаков, на чистых формулах. Задач...
​Applying Machine Learning to…..Yeast?">
Applying Machine Learning to…..Yeast?

🔗 Applying Machine Learning to…..Yeast?
Posted by Ted Baltz, Senior Staff Software Engineer, Google Research, Accelerated Science Team Humans have a long history with yeast, ti...
🎥 Daniel Hindrikes - Building smarter apps powered by Machine Learning
👁 1 раз 5896 сек.
Welcome to a Knowledge Sharing Wednesday Stream with tretton37.

Today's speaker is Daniel Hindrikes, App Innovation Architect, Microsoft MVP and co-author of the popular book, Xamarin.Forms Projects.

Building smarter apps powered by Machine Learning.

What if your apps could solve problems, deduce information from pictures and solve complex tasks? In the future, mobile apps will be so much more than a data displaying device. Using AI, apps will be able to answer complex problems at a whole new level!

In
​A state-of-the-art open source chatbot

🔗 A state-of-the-art open source chatbot
Today we’re announcing that Facebook AI has built and open-sourced Blender, the largest-ever open-domain chatbot. It outperforms others in terms of engagement and also feels more human, according to human evaluators.