Neural Networks | Нейронные сети
11.6K subscribers
805 photos
184 videos
170 files
9.46K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🎥 Solving PDEs with the FFT [Python]
👁 1 раз 896 сек.
This video describes how to solve PDEs with the Fast Fourier Transform (FFT) in Python.

Book Website: http://databookuw.com
Book PDF: http://databookuw.com/databook.pdf

These lectures follow Chapter 2 from:
"Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz

Amazon: https://www.amazon.com/Data-Driven-Science-Engineering-Learning-Dynamical/dp/1108422098/

Brunton Website: eigensteve.com
🎥 Shortcut Learning in Deep Neural Networks
👁 1 раз 2952 сек.
This paper establishes a framework for looking at out-of-distribution generalization failures of modern deep learning as the models learning false shortcuts that are present in the training data. The paper characterizes why and when shortcut learning can happen and gives recommendations for how to counter its effect.

https://arxiv.org/abs/2004.07780

Abstract:
Deep learning has triggered the current rise of artificial intelligence and is the workhorse of today's machine intelligence. Numerous success stori
🎥 Интервью директора департамента Machine learning компании МТС ИИ
👁 4 раз 1476 сек.
Ответ на разные вопросы от эксперта компании МТС.

https://practicingfutures.org/localhackday
Вопросы в данном видео:
Вы являетесь одним из экспертов хакатона Local Hack Day?
В каких мероприятиях вы принимали участие?
Могут ли школьники и студенты за 2-3 дня понять то, что дают несколько лет в университетах?
Является ли задача предсказания волн эпидемии проще, чем фильтация новостей?
Аттеншн!
Самая интересная задача в МТС?
А теперь поговорим про будущее...
Немного истории и статей, которые читал Till
Work,
​Интенсив. Неделя 3 " Основы Python часть 2 "

🔗 Интенсив. Неделя 3 " Основы Python часть 2 "
Предыдущий вебинар: (Основы Python часть 1)

На вебинаре:
• посмотрим PyCharm и как подключить свое окружение к проекту.
• научимся управлять git из среды разработки.
• изучим типы данных, условия, циклы.
• разберем массивы, списки, кортежи.
• изучим функции и некоторые стандартные библиотеки.
• посмотрим ООП и исключения.
• узнаем об оптимизации разработки в Python.

Цель программы:
•Обучить навыкам разработки проектов в сфере машинного обучения и компьютерного зрения.
•Повысить уровень программирования.
​Плейлист с видео по математике для машинного обучения.

https://www.youtube.com/playlist?list=PLcQCwsZDEzFmlSc6levE3UV9rZ8yY-D_7

Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 Mathematics for Machine Learning - YouTube



🎥 Mathematics for Machine Learning | 1 Introduction
👁 1 раз 151 сек.
This part introduces the pre-requisite we need for Math in Machine Learning.
In the subsequent videos we are going to teach you those basic mathematical concepts.

other important courses for machine learning.



A. Credit Risk Modeling: http://bit.ly/2vq2VLU

B. Business domain Foundations: http://bit.ly/36n2HC5

C. Deep Learning Specialization: http://bit.ly/2Si6E78

D. Corporate Finance: http://bit.ly/2uvoUR9

E. Quant Methods: http://bit.ly/2s64KML

F. Machine Learning in Trading: http://bit.ly/39J8pRD


🎥 Mathematics for Machine Learning | 2a Vectors and Matrices
👁 1 раз 607 сек.
This video introduces Vectors and Matrices in terms of data.
In subsequent video, we will understand mathematical operations on Vectors (& matrices).



A. Credit Risk Modeling: http://bit.ly/2vq2VLU

B. Business domain Foundations: http://bit.ly/36n2HC5

C. Deep Learning Specialization: http://bit.ly/2Si6E78

D. Corporate Finance: http://bit.ly/2uvoUR9

E. Quant Methods: http://bit.ly/2s64KML

F. Machine Learning in Trading: http://bit.ly/39J8pRD

G. Investment Management: http://bit.ly/2Z290bS

H. Data Dr


🎥 Mathematics for Machine Learning | 2b Vectors and Matrices
👁 1 раз 494 сек.
A practical mathematical representation of data and what it means by vector addition and scalar multiplication.

Budget laptop for Machine Learning at Home, buy with No Cost EMI available.

Acer Nitro 5 - https://amzn.to/2Yivs3m
Dell Inspiron Gaming - https://amzn.to/2SZ61Ov



Wacom digital pad for online teaching.

Wacom INTUOS Art, Pen & Touch Medium, CTH-690/K0-CX (Black) https://www.amazon.in/dp/B017629DGQ/ref=cm_sw_r_wa_apa_i_SqVgDb69649PV
​what PyTorch is, what its advantages are, and how it compares to TensorFlow and Sklearn
https://blog.paperspace.com/why-use-pytorch-deep-learning-framework/

🔗 Why PyTorch Is the Deep Learning Framework of the Future
Are you looking for an efficient and modern framework to create your deep learning model? Look no further than PyTorch! In this article we'll cover an introduction to PyTorch, what makes it so advantageous, and how PyTorch compares to TensorFlow and Scikit-Learn. Then we'll look at how to use PyTorch
🎥 Regular Expressions in Python - ALL You Need To Know - Programming Tutorial
👁 1 раз 3888 сек.
In this Python Tutorial, we will be learning about Regular Expressions (or RE, regex) in Python. Regular expressions are a powerful language for matching text patterns. Possible pattern examples for searches are e-mail addresses or domain names. This video covers all you need to know to understand any regex expression! I go over all important concepts and mix examples in between.

Here is an overview what I am showing you, if you want to skip to a specific part:

If you like this Tutorial, please subscribe
🎥 ООП 8 "Моносостояние". Объектно-ориентированное программирование в Python.
👁 2 раз 280 сек.
Стать спонсором канала
https://www.youtube.com/channel/UCMcC_43zGHttf9bY-xJOTwA/join
https://www.patreon.com/artem_egorov

http://egoroffartem.pythonanywhere.com/course/oop-python/monosostoyanie-dlya-ekzemplyarov-klassa

Попрактикуемся в создании классов и описании их методов.
Создадим атрибуты класса и экземпляра.
Также сделаем конструктор класса ( метод __init__ )

Object-Oriented Programming (OOP) in Python 3

http://egoroffartem.pythonanywhere.com/course/oop-python/praktika-sozdanie-klassa-i-ego-metodov
​GANs in computer vision - Conditional image and object generation

🔗 GANs in computer vision - Conditional image and object generation
The second article of the GANs in computer vision series - looking deeper in generative adversarial networks, mode collapse, conditional image synthesis, and 3D object generation, paired and unpaired image to image generation.
​Neural Networks from Scratch - Coding a Layer

A beginner’s guide to understanding the inner workings of Deep Learning

https://morioh.com/p/fb1b9f5a52bc

Video Part 1: https://www.youtube.com/watch?v=Wo5dMEP_BbI

Video Part 2: https://www.youtube.com/watch?v=lGLto9Xd7bU
Наш телеграм канал - tglink.me/ai_machinelearning_big_data

🔗 Neural Networks from Scratch - P.2 Coding a Layer
In this Python tutorial, you'll learn how to build neural networks from scratch. What’s a Neural Network? Neural Networks are like the workhorses of Deep learning. With enough data and computational power, they can be used to solve most of the problems in deep learning. It is very easy to use a Python or R library to create a neural network and train it on any dataset and get a great accuracy.