🎥 Building IMU-based Gesture Recognition! (awesome project!)
👁 1 раз ⏳ 556 сек.
👁 1 раз ⏳ 556 сек.
An inertial measurement unit (IMU) is a device that can sense motion and orientation. If you combine IMUs with machine learning, you can detect gestures! For last Halloween, I built a magic wand that combines IMUs, machine learning, and DIY electronics to detect different gestures when waving the wand. In this talk, we’ll go over the steps I took to build the wand and how you can do it too! Hardware prototyping is becoming more accessible than ever for people without a traditional hardware engineering backgVk
Building IMU-based Gesture Recognition! (awesome project!)
An inertial measurement unit (IMU) is a device that can sense motion and orientation. If you combine IMUs with machine learning, you can detect gestures! For last Halloween, I built a magic wand that combines IMUs, machine learning, and DIY electronics to…
🎥 Biological and Artificial Reinforcement Learning 1 | NeurIPS 2019
👁 1 раз ⏳ 2294 сек.
👁 1 раз ⏳ 2294 сек.
Continue to support the channel: https://paypal.me/aipursuit
-----------------------------------------------------------------------------------------
Subscribe ⇢ https://www.youtube.com/channel/UCe_QLqna7cFtTCfZ0a8pycg?sub_confirmation=1
-----------------------------------------------------------------------------------------
Video is reposted for education purpose.Vk
Biological and Artificial Reinforcement Learning 1 | NeurIPS 2019
Continue to support the channel: https://paypal.me/aipursuit
-----------------------------------------------------------------------------------------
Subscribe ⇢ https://www.youtube.com/channel/UCe_QLqna7cFtTCfZ0a8pycg?sub_confirmation=1
---------------…
-----------------------------------------------------------------------------------------
Subscribe ⇢ https://www.youtube.com/channel/UCe_QLqna7cFtTCfZ0a8pycg?sub_confirmation=1
---------------…
🎥 Andrew Ng Interview with Father Of Deep Learning , Geoffrey Hinton |Andrew Ng and Geoffrey Hinton
👁 1 раз ⏳ 2403 сек.
👁 1 раз ⏳ 2403 сек.
Please Share , Like and Subscribe the channel to support our work .
Find us on facebook
https://www.facebook.com/hemchandralive
Our YouTube URL
https://www.youtube.com/c/hemchandraliveVk
Andrew Ng Interview with Father Of Deep Learning , Geoffrey Hinton |Andrew Ng and Geoffrey Hinton
Please Share , Like and Subscribe the channel to support our work .
Find us on facebook
https://www.facebook.com/hemchandralive
Our YouTube URL
https://www.youtube.com/c/hemchandralive
Find us on facebook
https://www.facebook.com/hemchandralive
Our YouTube URL
https://www.youtube.com/c/hemchandralive
Machine Learning Tutorial Suite - 90+ Free Tutorials
https://data-flair.training/blogs/machine-learning-tutorials-home/
🔗 Machine Learning Tutorial and Deep Learning | Machine Learning using Python - DataFlair
Machine learning tutorial library - Package of 90+ free machine learning tutorials to grab the knowledge with lots of projects, case studies, & examples
https://data-flair.training/blogs/machine-learning-tutorials-home/
🔗 Machine Learning Tutorial and Deep Learning | Machine Learning using Python - DataFlair
Machine learning tutorial library - Package of 90+ free machine learning tutorials to grab the knowledge with lots of projects, case studies, & examples
DataFlair
Machine Learning Tutorial – Learn Machine Learning using Python - DataFlair
Machine learning tutorial library - Package of 170+ free machine learning tutorials with lots of practicals, projects, case studies
Learn Machine Learning in 2020
🔗 Learn Machine Learning in 2020
Best books and courses about machine learning to start with
🔗 Learn Machine Learning in 2020
Best books and courses about machine learning to start with
Medium
Learn Machine Learning in 2020
Best books and courses about machine learning to start with
Making Deepfake Tools Doesn’t Have to Be Irresponsible. Here’s How.
🔗 Making Deepfake Tools Doesn’t Have to Be Irresponsible. Here’s How.
It’s possible to limit the harm synthetic media tools might cause — but it won’t happen without effort
🔗 Making Deepfake Tools Doesn’t Have to Be Irresponsible. Here’s How.
It’s possible to limit the harm synthetic media tools might cause — but it won’t happen without effort
Medium
Making Deepfake Tools Doesn’t Have to Be Irresponsible. Here’s How.
It’s possible to limit the harm synthetic media tools might cause — but it won’t happen without effort
Deploying Machine Learning Models as Data, not Code: omega|ml
🔗 Deploying Machine Learning Models as Data, not Code: omega|ml
The data science community is on a mission to find the optimal approach to deploying machine learning solutions.
🔗 Deploying Machine Learning Models as Data, not Code: omega|ml
The data science community is on a mission to find the optimal approach to deploying machine learning solutions.
Medium
Deploying Machine Learning Models as Data, not Code — A better match? MLOps using omega|ml
The data science community is on a mission to find the optimal approach to deploying machine learning solutions.
🎥 How Machine Learning Drives the Deceptive World of Deepfakes
👁 1 раз ⏳ 452 сек.
👁 1 раз ⏳ 452 сек.
Deepfakes are spreading fast, and while some have playful intentions, others can cause serious harm. We stepped inside this deceptive new world to see what experts are doing to catch this altered content.
»Subscribe to Seeker! http://bit.ly/subscribeseeker
»Watch more Focal Point | https://bit.ly/2s0cf7w
Chances are you’ve seen a deepfake; Donald Trump, Barack Obama, and Mark Zuckerberg have all been targets of the computer-generated replications.
A deepfake is a video or an audio clip where deep lVk
How Machine Learning Drives the Deceptive World of Deepfakes
Deepfakes are spreading fast, and while some have playful intentions, others can cause serious harm. We stepped inside this deceptive new world to see what experts are doing to catch this altered content.
»Subscribe to Seeker! http://bit.ly/subscribeseeker…
»Subscribe to Seeker! http://bit.ly/subscribeseeker…
Коллеги, простите что отвлекаю, но правда, неделю уже ищу, схему электрическую для - OpenBCI, подскажите пожалуйста, где можно ее найти?
Useful Models for Robot Learning
Slides by Marc Deisenroth : https://deisenroth.cc/talks/2019-12-14-neurips-ws.pdf
#ReinforcementLearning #Robotics #MetaLearning
🔗
Slides by Marc Deisenroth : https://deisenroth.cc/talks/2019-12-14-neurips-ws.pdf
#ReinforcementLearning #Robotics #MetaLearning
🔗
Artist in the Cloud
Towards the summit of AI, art, and autonomy
Gene Kogan : https://medium.com/@genekogan/artist-in-the-cloud-8384824a75c7
#ArtificialIntelligence #MachineLearning #Cryptoeconomics #Decentralization #Art
🔗 Artist in the Cloud
Towards the summit of AI, art, and autonomy
Towards the summit of AI, art, and autonomy
Gene Kogan : https://medium.com/@genekogan/artist-in-the-cloud-8384824a75c7
#ArtificialIntelligence #MachineLearning #Cryptoeconomics #Decentralization #Art
🔗 Artist in the Cloud
Towards the summit of AI, art, and autonomy
Medium
Artist in the Cloud
Towards the summit of AI, art, and autonomy
Reinforcement learning framework and toolkits (Gym and Unity)
🔗 Reinforcement learning framework and toolkits (Gym and Unity)
An introduction to the reinforcement learning framework, and the environments Cart-pole (Gym) and Banana Colector (Unity)
🔗 Reinforcement learning framework and toolkits (Gym and Unity)
An introduction to the reinforcement learning framework, and the environments Cart-pole (Gym) and Banana Colector (Unity)
Medium
Reinforcement learning framework and toolkits (Gym and Unity)
An introduction to the reinforcement learning framework, and the environments Cart-pole (Gym) and Banana Colector (Unity)
Deep Learning for Computer Vision with Python Dr Adrian Rosebrock
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
📝 Deep_Learning_for_Computer_Vision_with_Python_Dr_Adrian_Rosebrock_2017_PDF_ENG.pdf - 💾27 660 308
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
📝 Deep_Learning_for_Computer_Vision_with_Python_Dr_Adrian_Rosebrock_2017_PDF_ENG.pdf - 💾27 660 308
Guide to learn computer vision in 2020
🔗 Guide to learn computer vision in 2020
This post will focus on resourses, which I believe will boost your knowledge the most in the computer vision.
🔗 Guide to learn computer vision in 2020
This post will focus on resourses, which I believe will boost your knowledge the most in the computer vision.
Medium
Guide how to learn and master computer vision in 2020
This post will focus on resourses, which I believe will boost your knowledge the most in the computer vision.
https://ai.facebook.com/blog/deepfake-detection-challenge-launches-with-new-data-set-and-kaggle-site/
https://deepfakedetectionchallenge.ai/
🔗 Deepfake Detection Challenge launches with new data set and Kaggle site
We’ve launched the Deepfake Detection Challenge, an open, collaborative initiative to accelerate development of new technologies for detecting deepfakes and manipulated media.
https://deepfakedetectionchallenge.ai/
🔗 Deepfake Detection Challenge launches with new data set and Kaggle site
We’ve launched the Deepfake Detection Challenge, an open, collaborative initiative to accelerate development of new technologies for detecting deepfakes and manipulated media.
Facebook
Deepfake Detection Challenge launches with new data set and Kaggle site
We’ve launched the Deepfake Detection Challenge, an open, collaborative initiative to accelerate development of new technologies for detecting deepfakes and manipulated media.
Few-shot Video-to-Video Synthesis
https://www.youtube.com/watch?v=8AZBuyEuDqc&feature=youtu.be
[Paper] 👉 https://arxiv.org/abs/1910.12713
[Video]👉https://www.youtube.com/watch?v=8AZBuyEuDqc&feature=youtu.be
Code👉https://github.com/NVlabs/few-shot-vid2vid
🔗 Few-shot Video-to-Video Synthesis
Video-to-video synthesis (vid2vid) aims at converting an input semantic video, such as videos of human poses or segmentation masks, to an output photorealistic video. While the state-of-the-art of vid2vid has advanced significantly, existing approaches share two major limitations. First, they are data-hungry. Numerous images of a target human subject or a scene are required for training. Second, a learned model has limited generalization capability. A pose-to-human vid2vid model can only synthesize poses of the single person in the training set. It does not generalize to other humans that are not in the training set. To address the limitations, we propose a few-shot vid2vid framework, which learns to synthesize videos of previously unseen subjects or scenes by leveraging few example images of the target at test time. Our model achieves this few-shot generalization capability via a novel network weight generation module utilizing an attention mechanism. We conduct extensive experimental validations with compar
🎥 Few-Shot Video-to-Video Synthesis (NeurIPS 2019)
👁 1 раз ⏳ 128 сек.
https://www.youtube.com/watch?v=8AZBuyEuDqc&feature=youtu.be
[Paper] 👉 https://arxiv.org/abs/1910.12713
[Video]👉https://www.youtube.com/watch?v=8AZBuyEuDqc&feature=youtu.be
Code👉https://github.com/NVlabs/few-shot-vid2vid
🔗 Few-shot Video-to-Video Synthesis
Video-to-video synthesis (vid2vid) aims at converting an input semantic video, such as videos of human poses or segmentation masks, to an output photorealistic video. While the state-of-the-art of vid2vid has advanced significantly, existing approaches share two major limitations. First, they are data-hungry. Numerous images of a target human subject or a scene are required for training. Second, a learned model has limited generalization capability. A pose-to-human vid2vid model can only synthesize poses of the single person in the training set. It does not generalize to other humans that are not in the training set. To address the limitations, we propose a few-shot vid2vid framework, which learns to synthesize videos of previously unseen subjects or scenes by leveraging few example images of the target at test time. Our model achieves this few-shot generalization capability via a novel network weight generation module utilizing an attention mechanism. We conduct extensive experimental validations with compar
🎥 Few-Shot Video-to-Video Synthesis (NeurIPS 2019)
👁 1 раз ⏳ 128 сек.
Few-shot photorealistic video-to-video translation. It can be used for generating human motions from poses, synthesizing people talking from edge maps, or turning semantic label maps into photo-realistic videos. For more details, please visit https://nvlabs.github.io/few-shot-vid2vid/.YouTube
Few-Shot Video-to-Video Synthesis (NeurIPS 2019)
Few-shot photorealistic video-to-video translation. It can be used for generating human motions from poses, synthesizing people talking from edge maps, or turning semantic label maps into photo-realistic videos. For more details, please visit https://nvl…
Paper: https://arxiv.org/abs/1912.05656
code: https://github.com/mkocabas/VIBE
🔗 mkocabas/VIBE
Reference implementation of "VIBE: Video Inference for Human Body Pose and Shape Estimation" - mkocabas/VIBE
code: https://github.com/mkocabas/VIBE
🔗 mkocabas/VIBE
Reference implementation of "VIBE: Video Inference for Human Body Pose and Shape Estimation" - mkocabas/VIBE
arXiv.org
VIBE: Video Inference for Human Body Pose and Shape Estimation
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methods fail to produce accurate and...
AI Journey: доклады и результаты соревнования
Всем привет! С октября по декабрь проходила серия конференций по искусственному интеллекту – AI Journey. Чуть раньше в ноябре мы подвели итоги международного соревнования по созданию общего или сильного ИИ – artificial general intelligence (AGI). Хотим сразу вас успокоить, что мы не создали сильный ИИ, но приблизились к этому с помощью robot college student test. Участники должны были натренировать свои алгоритмы так, чтобы те смогли сдать выпускной экзамен по русскому языку. В итоге решения победителей получили "четвёрки".
Под катом среди прочих вы найдёте записи выступлений Юргена Шмидхубера — автора работы о LISP; Анны Вероники Дорогуш — руководительницы разработки библиотеки машинного обучения CatBoost; Бена Герцеля, который и ввёл термин robot college student test.
🔗 AI Journey: доклады и результаты соревнования
Всем привет! С октября по декабрь проходила серия конференций по искусственному интеллекту – AI Journey. Чуть раньше в ноябре мы подвели итоги международного сор...
Всем привет! С октября по декабрь проходила серия конференций по искусственному интеллекту – AI Journey. Чуть раньше в ноябре мы подвели итоги международного соревнования по созданию общего или сильного ИИ – artificial general intelligence (AGI). Хотим сразу вас успокоить, что мы не создали сильный ИИ, но приблизились к этому с помощью robot college student test. Участники должны были натренировать свои алгоритмы так, чтобы те смогли сдать выпускной экзамен по русскому языку. В итоге решения победителей получили "четвёрки".
Под катом среди прочих вы найдёте записи выступлений Юргена Шмидхубера — автора работы о LISP; Анны Вероники Дорогуш — руководительницы разработки библиотеки машинного обучения CatBoost; Бена Герцеля, который и ввёл термин robot college student test.
🔗 AI Journey: доклады и результаты соревнования
Всем привет! С октября по декабрь проходила серия конференций по искусственному интеллекту – AI Journey. Чуть раньше в ноябре мы подвели итоги международного сор...
Хабр
AI Journey: доклады и результаты соревнования
Всем привет! С октября по декабрь проходила серия конференций по искусственному интеллекту – AI Journey. Чуть раньше в ноябре мы подвели итоги международного соревнования по созданию общего или...
52 датасета для тренировочных проектов
Mall Customers Dataset — данные посетителей магазина:id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Learning)
Iris Dataset — датасет для новичков, содержащий размеры чашелистиков и лепестков для различных цветков.
MNIST Dataset — датасет рукописных цифр. 60 000 тренировочных изображений и 10 000 тестовых изображений.
The Boston Housing Dataset — популярный датасет для распознавания паттернов. Содержит информацию о домах в Бостоне: количество квартир, стоимость аренды, индекс преступлений.
Fake News Detection Dataset — содержит 7796 записей с разметкой новостей: правда или ложь. (Вариант применения с исходником на Python: Fake News Detection Python Project )
Wine quality dataset — содержит информацию о вине: 4898 записей с 14 параметрами.
🔗 52 датасета для тренировочных проектов
Mall Customers Dataset — данные посетителей магазина:id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Lear...
Mall Customers Dataset — данные посетителей магазина:id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Learning)
Iris Dataset — датасет для новичков, содержащий размеры чашелистиков и лепестков для различных цветков.
MNIST Dataset — датасет рукописных цифр. 60 000 тренировочных изображений и 10 000 тестовых изображений.
The Boston Housing Dataset — популярный датасет для распознавания паттернов. Содержит информацию о домах в Бостоне: количество квартир, стоимость аренды, индекс преступлений.
Fake News Detection Dataset — содержит 7796 записей с разметкой новостей: правда или ложь. (Вариант применения с исходником на Python: Fake News Detection Python Project )
Wine quality dataset — содержит информацию о вине: 4898 записей с 14 параметрами.
🔗 52 датасета для тренировочных проектов
Mall Customers Dataset — данные посетителей магазина:id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Lear...
Хабр
52 датасета для тренировочных проектов
Mall Customers Dataset — данные посетителей магазина: id, пол, возраст, доход, рейтинг трат. ( Вариант применения: Customer Segmentation Project with Machine Learning ) Iris Dataset — датасет для...