Comixify: transform any video into a comics
comixify.ii.pw.edu.pl
🔗 Comixify - AI driven story telling
Turn your videos and into comics, with the power of AI. Use Comixify to tell your story in awesome comic book style in few clicks.
comixify.ii.pw.edu.pl
🔗 Comixify - AI driven story telling
Turn your videos and into comics, with the power of AI. Use Comixify to tell your story in awesome comic book style in few clicks.
comixify.ai
Comixify - AI driven story telling
Turn your videos and into comics, with the power of AI. Use Comixify to tell your story in awesome comic book style in few clicks.
Step-by-Step R-CNN Implementation From Scratch In Python
🔗 Step-by-Step R-CNN Implementation From Scratch In Python
Classification and object detection are the main part of computer vision. Classification is finding what is in an image and object…
🔗 Step-by-Step R-CNN Implementation From Scratch In Python
Classification and object detection are the main part of computer vision. Classification is finding what is in an image and object…
Medium
Step-by-Step R-CNN Implementation From Scratch In Python
Classification and object detection are the main part of computer vision. Classification is finding what is in an image and object…
🎥 AutoML Tables (AI Adventures)
👁 2 раз ⏳ 300 сек.
👁 2 раз ⏳ 300 сек.
In this episode of AI Adventures, Yufeng introduces AutoML Tables, a tool to automatically build and deploy state-of-the-art machine learning models on structured data. It automates modeling on a wide range of data types, including numbers, classes, strings, timestamps, lists, and nested fields.
Read about AutoML Tables at KaggleDays SF → https://goo.gle/2MqdV1V
AutoML Tables → https://goo.gle/31givUk
Check out the rest of the Cloud AI Adventures playlist → https://goo.gl/UC5usG
Subscribe to get all tVk
AutoML Tables (AI Adventures)
In this episode of AI Adventures, Yufeng introduces AutoML Tables, a tool to automatically build and deploy state-of-the-art machine learning models on structured data. It automates modeling on a wide range of data types, including numbers, classes, strings…
Opencv with Cuda Python
https://github.com/harrism/numba_examples/
https://developer.nvidia.com/how-to-cuda-python
https://devblogs.nvidia.com/numba-python-cuda-acceleration/
🔗 harrism/numba_examples
Examples using Numba. Contribute to harrism/numba_examples development by creating an account on GitHub.
https://github.com/harrism/numba_examples/
https://developer.nvidia.com/how-to-cuda-python
https://devblogs.nvidia.com/numba-python-cuda-acceleration/
🔗 harrism/numba_examples
Examples using Numba. Contribute to harrism/numba_examples development by creating an account on GitHub.
GitHub
GitHub - harrism/numba_examples: Examples using Numba.
Examples using Numba. Contribute to harrism/numba_examples development by creating an account on GitHub.
AI Learns Human Movement From Unorganized Data 🏃♀️
🔗 AI Learns Human Movement From Unorganized Data 🏃♀️
❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers 📝 The paper "Learning Predict-and-Simulate Policies From Unorganized Human Motion Data" is available here: http://mrl.snu.ac.kr/publications/ProjectICC/ICC.html 🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible: Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bryan Learn, Christian Ahlin, Claudio Fernandes, Daniel Hasegan, Dennis Abts, Eri
🔗 AI Learns Human Movement From Unorganized Data 🏃♀️
❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers 📝 The paper "Learning Predict-and-Simulate Policies From Unorganized Human Motion Data" is available here: http://mrl.snu.ac.kr/publications/ProjectICC/ICC.html 🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible: Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bryan Learn, Christian Ahlin, Claudio Fernandes, Daniel Hasegan, Dennis Abts, Eri
YouTube
AI Learns Human Movement From Unorganized Data 🏃♀️
❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers
📝 The paper "Learning Predict-and-Simulate Policies From Unorganized Human Motion Data" is available here:
http://mrl.snu.ac.kr/publications/ProjectICC/ICC.html
🙏 We…
📝 The paper "Learning Predict-and-Simulate Policies From Unorganized Human Motion Data" is available here:
http://mrl.snu.ac.kr/publications/ProjectICC/ICC.html
🙏 We…
DeepGCNs: Making GCNs Go as Deep as CNNs
https://deepai.org/publication/deepgcns-making-gcns-go-as-deep-as-cnns?fbclid=IwAR2edqmWo5uKSGybcgRWW43ov-03resk_as2EoJ52nzeaF_3jSnnV3bxH1o
#DeepAI #neuralnetworks #CNNs ##GCNs
🔗 DeepGCNs: Making GCNs Go as Deep as CNNs
10/15/19 - Convolutional Neural Networks (CNNs) have been very successful at solving a variety of computer vision tasks such as object classi...
https://deepai.org/publication/deepgcns-making-gcns-go-as-deep-as-cnns?fbclid=IwAR2edqmWo5uKSGybcgRWW43ov-03resk_as2EoJ52nzeaF_3jSnnV3bxH1o
#DeepAI #neuralnetworks #CNNs ##GCNs
🔗 DeepGCNs: Making GCNs Go as Deep as CNNs
10/15/19 - Convolutional Neural Networks (CNNs) have been very successful at solving a variety of computer vision tasks such as object classi...
DeepAI
DeepGCNs: Making GCNs Go as Deep as CNNs
10/15/19 - Convolutional Neural Networks (CNNs) have been very successful at solving a
variety of computer vision tasks such as object classi...
variety of computer vision tasks such as object classi...
Neural networks taught to "read minds" in real time
🔗 Neural networks taught to "read minds" in real time
As part of the NeuroNet NTI Assistive Neurotechnology project, employees of the Neurobotics Group of Companies and the Moscow Institute of Physics and Technology have trained neural networks to recreate images of the electrical activity of the brain. Earlier, no such experiments were performed on EEG material (other scientists used fMRI or analyzed signals directly from neurons). In the future, this discovery will create a new type of device for post-stroke rehabilitation.
https://www.biorxiv.org/content/10.1101/787101v2
#AI #ML #DL
🔗 Neural networks taught to "read minds" in real time
As part of the NeuroNet NTI Assistive Neurotechnology project, employees of the Neurobotics Group of Companies and the Moscow Institute of Physics and Technology have trained neural networks to recreate images of the electrical activity of the brain. Earlier, no such experiments were performed on EEG material (other scientists used fMRI or analyzed signals directly from neurons). In the future, this discovery will create a new type of device for post-stroke rehabilitation.
https://www.biorxiv.org/content/10.1101/787101v2
#AI #ML #DL
YouTube
Neural networks taught to "read minds" in real time
As part of the NeuroNet NTI Assistive Neurotechnology project, employees of the Neurobotics Group of Companies and the Moscow Institute of Physics and Technology have trained neural networks to recreate images of the electrical activity of the brain. Earlier…
Deploying your first Deep Learning Model: MNIST in production environment
🔗 Deploying your first Deep Learning Model: MNIST in production environment
How you can deploy your MNIST model to production environment
🔗 Deploying your first Deep Learning Model: MNIST in production environment
How you can deploy your MNIST model to production environment
Medium
Deploying your first Deep Learning Model: MNIST in production environment
How you can deploy your MNIST model to production environment
#video #c_sharp
Нейронная сеть C#
- Искусственный интеллект и нейронные сети C#. Машинное обучение для начинающих. Простая нейросеть.
- Искусственный интеллект C#. Обучение нейронных сетей. Алгоритм обратного распространения ошибки
- Нейронные сети C#. Нормализация и масштабирование данных. Обучение по Dataset.
- Искусственный интеллект C#. Компьютерное зрение и распознавание образов нейронной сетью
- Искусственный интеллект и нейронные сети C#. Информационная система медицинской организации
🎥 Искусственный интеллект и нейронные сети C#. Машинное обучение для начинающих. Простая нейросеть.
👁 17 раз ⏳ 8928 сек.
🎥 Искусственный интеллект C#. Обучение нейронных сетей. Алгоритм обратного распространения ошибки
👁 2 раз ⏳ 7803 сек.
🎥 Нейронные сети C#. Нормализация и масштабирование данных. Обучение по Dataset.
👁 3 раз ⏳ 7635 сек.
🎥 Искусственный интеллект C#. Компьютерное зрение и распознавание образов нейронной сетью
👁 3 раз ⏳ 8198 сек.
🎥 Искусственный интеллект и нейронные сети C#. Информационная система медицинской организации
👁 2 раз ⏳ 8488 сек.
Нейронная сеть C#
- Искусственный интеллект и нейронные сети C#. Машинное обучение для начинающих. Простая нейросеть.
- Искусственный интеллект C#. Обучение нейронных сетей. Алгоритм обратного распространения ошибки
- Нейронные сети C#. Нормализация и масштабирование данных. Обучение по Dataset.
- Искусственный интеллект C#. Компьютерное зрение и распознавание образов нейронной сетью
- Искусственный интеллект и нейронные сети C#. Информационная система медицинской организации
🎥 Искусственный интеллект и нейронные сети C#. Машинное обучение для начинающих. Простая нейросеть.
👁 17 раз ⏳ 8928 сек.
Мы изучим основные понятия и теорию необходимые для создания нейронных сетей, поймем главный принцип работы искусственного интеллекта и приступим к...🎥 Искусственный интеллект C#. Обучение нейронных сетей. Алгоритм обратного распространения ошибки
👁 2 раз ⏳ 7803 сек.
Основной задачей при разработке искусственного интеллекта является обучение нейронной сети. Это наиболее затратный процесс и для его успешного выпо...🎥 Нейронные сети C#. Нормализация и масштабирование данных. Обучение по Dataset.
👁 3 раз ⏳ 7635 сек.
Использую информацию по историческим данным (dataset - датасет) мы научимся с определенной вероятностью прогнозировать наличие сердечных заболевани...🎥 Искусственный интеллект C#. Компьютерное зрение и распознавание образов нейронной сетью
👁 3 раз ⏳ 8198 сек.
На основе большого количества изображений о клетках малярии мы научимся реализовывать простые механизмы компьютерного зрения и распознавания образо...🎥 Искусственный интеллект и нейронные сети C#. Информационная система медицинской организации
👁 2 раз ⏳ 8488 сек.
Завершаем разработку простой медицинской информационной системы, которую мы реализовали с помощью языка программирования C# и алгоритмов машинного ...Vk
Искусственный интеллект и нейронные сети C#. Машинное обучение для начинающих. Простая нейросеть.
Мы изучим основные понятия и теорию необходимые для создания нейронных сетей, поймем главный принцип работы искусственного интеллекта и приступим к...
Data Science’s Most Misunderstood Hero
🔗 Data Science’s Most Misunderstood Hero
Why treating analytics like a second-class citizen will hurt you
🔗 Data Science’s Most Misunderstood Hero
Why treating analytics like a second-class citizen will hurt you
Medium
Data Science’s Most Misunderstood Hero
Why treating analytics like a second-class citizen will hurt you
Choosing a Machine Learning Model
🔗 Choosing a Machine Learning Model
Ever wonder how we can apply machine learning algorithms to a problem in order to analyze, visualize, discover trends & find correlations…
🔗 Choosing a Machine Learning Model
Ever wonder how we can apply machine learning algorithms to a problem in order to analyze, visualize, discover trends & find correlations…
Medium
Choosing a Machine Learning Model
Ever wonder how we can apply machine learning algorithms to a problem in order to analyze, visualize, discover trends & find correlations…
🎥 Regression and Python in Tensorflow: Part 2
👁 1 раз ⏳ 1277 сек.
👁 1 раз ⏳ 1277 сек.
General Description:
In this series of videos, we will be using the TensorFlow Python module to perform regression on the MPG (miles-per-gallon) dataset.
The intent of this video series is to predict the MPG of a car given a number of attributes of the car, i.e. horsepower, number of cylinders, year of production, etc.
This video is part of a series on Machine Learning in Python. The link to the playlist may be accessed here:
http://bit.ly/lp_mlearn
This video is inspired by the wonderful Tensorflow tutoVk
Regression and Python in Tensorflow: Part 2
General Description:
In this series of videos, we will be using the TensorFlow Python module to perform regression on the MPG (miles-per-gallon) dataset.
The intent of this video series is to predict the MPG of a car given a number of attributes of the car…
In this series of videos, we will be using the TensorFlow Python module to perform regression on the MPG (miles-per-gallon) dataset.
The intent of this video series is to predict the MPG of a car given a number of attributes of the car…
Keras Custom Training Loop
🔗 Keras Custom Training Loop
How to build a custom training loop in Keras at a lower level of abstraction, K.function, get_updates usage and other stuff under the hood
🔗 Keras Custom Training Loop
How to build a custom training loop in Keras at a lower level of abstraction, K.function, get_updates usage and other stuff under the hood
Medium
Keras Custom Training Loop
How to build a custom training loop in Keras at a lower level of abstraction, K.function, get_updates usage and other stuff under the hood
Restoring ancient text using deep learning: a case study on Greek epigraphy
https://deepmind.com/research/publications/Restoring-ancient-text-using-deep-learning-a-case-study-on-Greek-epigraphy
🔗 DeepMind: What if solving one problem could unlock solutions to thousands more?
We research and build safe AI systems that learn how to solve problems and advance scientific discovery for all. Explore our work: deepmind.com/research
https://deepmind.com/research/publications/Restoring-ancient-text-using-deep-learning-a-case-study-on-Greek-epigraphy
🔗 DeepMind: What if solving one problem could unlock solutions to thousands more?
We research and build safe AI systems that learn how to solve problems and advance scientific discovery for all. Explore our work: deepmind.com/research
Чипы для ML — рассказываем о новинках
Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов.
Подборка по теме:
Инструменты для разработчиков ПО: открытые фреймворки и библиотеки МО
🔗 Чипы для ML — рассказываем о новинках
Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов. Подборк...
Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов.
Подборка по теме:
Инструменты для разработчиков ПО: открытые фреймворки и библиотеки МО
🔗 Чипы для ML — рассказываем о новинках
Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов. Подборк...
Хабр
Чипы для ML — рассказываем о новинках
Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов. Подборк...
Machine Learning and Data Science Applications in Industry
https://github.com/firmai/industry-machine-learning/blob/master/README.md
🔗 firmai/industry-machine-learning
A curated list of applied machine learning and data science notebooks and libraries across different industries. - firmai/industry-machine-learning
https://github.com/firmai/industry-machine-learning/blob/master/README.md
🔗 firmai/industry-machine-learning
A curated list of applied machine learning and data science notebooks and libraries across different industries. - firmai/industry-machine-learning
GitHub
industry-machine-learning/README.md at master · firmai/industry-machine-learning
A curated list of applied machine learning and data science notebooks and libraries across different industries (by @firmai) - firmai/industry-machine-learning
Uncertainty Quantification in Deep Learning
https://www.inovex.de/blog/uncertainty-quantification-deep-learning/
🔗 Uncertainty Quantification in Deep Learning
Artificial Intelligence—and machine learning in particular—have come a long way since their early beginnings. The widespread availability and affordability of powerful computing resources have enabled the development of complex models like Deep Neural Networks (DNNs). Research has come up with spectacular results in fields like computer vision, speech recognition or game strategies, where Deep Learning
https://www.inovex.de/blog/uncertainty-quantification-deep-learning/
🔗 Uncertainty Quantification in Deep Learning
Artificial Intelligence—and machine learning in particular—have come a long way since their early beginnings. The widespread availability and affordability of powerful computing resources have enabled the development of complex models like Deep Neural Networks (DNNs). Research has come up with spectacular results in fields like computer vision, speech recognition or game strategies, where Deep Learning
inovex GmbH
Uncertainty Quantification in Deep Learning - inovex GmbH
Teach your Deep Neural Network to be aware of its epistemic and aleatory uncertainty. Get a quantified confidence measure for your Deep Learning predictions.
A Gentle Introduction to Cross-Entropy for Machine Learning
🔗 A Gentle Introduction to Cross-Entropy for Machine Learning
Cross-entropy is commonly used in machine learning as a loss function. Cross-entropy is a measure from the field of information theory, building upon entropy and generally calculating the difference between two probability distributions. It is closely related to but is different from KL divergence that calculates the relative entropy between two probability distributions, whereas cross-entropy …
🔗 A Gentle Introduction to Cross-Entropy for Machine Learning
Cross-entropy is commonly used in machine learning as a loss function. Cross-entropy is a measure from the field of information theory, building upon entropy and generally calculating the difference between two probability distributions. It is closely related to but is different from KL divergence that calculates the relative entropy between two probability distributions, whereas cross-entropy …
Autonomous Distributed Networks: The unfulfilled libertarian dream of breaking free from regulations
🔗 Autonomous Distributed Networks: The unfulfilled libertarian dream of breaking free from regulations
Keywords: Blockchain, Distributed Ledger Technology, Decentralised Governance, Regulatory Compliance, Autonomous Distributed Networks…
🔗 Autonomous Distributed Networks: The unfulfilled libertarian dream of breaking free from regulations
Keywords: Blockchain, Distributed Ledger Technology, Decentralised Governance, Regulatory Compliance, Autonomous Distributed Networks…
Medium
Autonomous Distributed Networks: The unfulfilled libertarian dream of breaking free from regulations
Keywords: Blockchain, Distributed Ledger Technology, Decentralised Governance, Regulatory Compliance, Autonomous Distributed Networks…
Стохастический градиентный спуск(SGD) для логарифмической функции потерь(LogLoss) в задаче бинарной классификации
Предыдущая часть(про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458
В этой статье я покажу решение задачи классификации сначала, что называется, «ручками», без сторонних библиотек для SGD, LogLoss'а и вычисления градиентов, а затем с помощью библиотеки PyTorch.
🔗 Стохастический градиентный спуск(SGD) для логарифмической функции потерь(LogLoss) в задаче бинарной классификации
Предыдущая часть(про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458 В этой статье я покажу решение задачи класс...
Предыдущая часть(про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458
В этой статье я покажу решение задачи классификации сначала, что называется, «ручками», без сторонних библиотек для SGD, LogLoss'а и вычисления градиентов, а затем с помощью библиотеки PyTorch.
🔗 Стохастический градиентный спуск(SGD) для логарифмической функции потерь(LogLoss) в задаче бинарной классификации
Предыдущая часть(про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458 В этой статье я покажу решение задачи класс...
Хабр
Линейная регрессия и градиентный спуск
Пусть в некоторой предметной области исследуются показатели X и Y, которые имеют количественное выражение. При этом есть все основания полагать, что показатель Y зависит от показателя X. Это положение...