🎥 3 Limits of Artificial Intelligence
👁 6 раз ⏳ 862 сек.
👁 6 раз ⏳ 862 сек.
AI has enabled so many new opportunities for people to create a positive impact in the world by creating engineering solutions across every industry! However, AI is still evolving and we have to address its limitations as well. In this video, I'll explain 3 major limits of AI - a lack of causal reasoning, vulnerability to adversarial examples, and a lack of interpretability. I'll also explain ways to solve these limits and earn a profit doing so. The next time someone asks you what AI can't currently do, shVk
3 Limits of Artificial Intelligence
AI has enabled so many new opportunities for people to create a positive impact in the world by creating engineering solutions across every industry! However, AI is still evolving and we have to address its limitations as well. In this video, I'll explain…
Рекомендательные системы: идеи, подходы, задачи
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
https://habr.com/ru/company/jetinfosystems/blog/453792/
🔗 Рекомендательные системы: идеи, подходы, задачи
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом инте...
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
https://habr.com/ru/company/jetinfosystems/blog/453792/
🔗 Рекомендательные системы: идеи, подходы, задачи
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом инте...
Хабр
Рекомендательные системы: идеи, подходы, задачи
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее...
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://towardsdatascience.com/basic-principles-to-create-a-time-series-forecast-6ae002d177a4?source=collection_home---4------0-----------------------
🔗 Basic Principles to Create a Time Series Forecast
Explaining the basics steps to create time series forecasts.
https://towardsdatascience.com/basic-principles-to-create-a-time-series-forecast-6ae002d177a4?source=collection_home---4------0-----------------------
🔗 Basic Principles to Create a Time Series Forecast
Explaining the basics steps to create time series forecasts.
Towards Data Science
Basic Principles to Create a Time Series Forecast
Explaining the basics steps to create time series forecasts.
Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML 2019. Arxiv link: https://arxiv.org/abs/1905.11946.
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
🔗 tensorflow/tpu
Reference models and tools for Cloud TPUs. Contribute to tensorflow/tpu development by creating an account on GitHub.
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
🔗 tensorflow/tpu
Reference models and tools for Cloud TPUs. Contribute to tensorflow/tpu development by creating an account on GitHub.
arXiv.org
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically...
When and when not to A/B test
🔗 When and when not to A/B test
Split test vs. multi-armed bandit: simulation, source code and ready-to-use app
🔗 When and when not to A/B test
Split test vs. multi-armed bandit: simulation, source code and ready-to-use app
Towards Data Science
When and when not to A/B test
Split test vs. multi-armed bandit: simulation, source code and ready-to-use app
🎥 Азамат Бердышев - Элегантные абстракции в вычислениях машинного обучения
👁 1 раз ⏳ 3967 сек.
👁 1 раз ⏳ 3967 сек.
VI DS/ML Meetup Astana
4) Абстракции в вычислениях машинного обучения.
Азамат Бердышев рассмотрит конфликт между dynamism, generics & speed в вычислениях машинного обучения. Он попытается донести, что при правильной абстракции вычислений, несмотря на то, что мы наблюдаем в Python, R, MATLAB и др., можно писать код, обладающий всеми тремя качествами.
Мы также попытаемся понять, какие из существующих ограничений софта являются фундаментальными (т.е. от железа), а какие случайными (т.е. связаны с дизайном сVk
Азамат Бердышев - Элегантные абстракции в вычислениях машинного обучения
VI DS/ML Meetup Astana
4) Абстракции в вычислениях машинного обучения.
Азамат Бердышев рассмотрит конфликт между dynamism, generics & speed в вычислениях машинного обучения. Он попытается донести, что при правильной абстракции вычислений, несмотря на то…
4) Абстракции в вычислениях машинного обучения.
Азамат Бердышев рассмотрит конфликт между dynamism, generics & speed в вычислениях машинного обучения. Он попытается донести, что при правильной абстракции вычислений, несмотря на то…
50,000 training samples
https://www.profillic.com/paper/arxiv:1905.10498
🔗 Profillic: AI research & source code to supercharge your projects
Explore state-of-the-art in machine learning, AI, and robotics research. Browse papers, source code, models, and more by topics and authors. Connect with researchers and engineers working on related problems in machine learning, deep learning, natural language processing, robotics, computer vision, data mining, neural networks, artificial intelligence/AI, data science... and explore working together on projects, github code
https://www.profillic.com/paper/arxiv:1905.10498
🔗 Profillic: AI research & source code to supercharge your projects
Explore state-of-the-art in machine learning, AI, and robotics research. Browse papers, source code, models, and more by topics and authors. Connect with researchers and engineers working on related problems in machine learning, deep learning, natural language processing, robotics, computer vision, data mining, neural networks, artificial intelligence/AI, data science... and explore working together on projects, github code
Profillic
Profillic: AI research & source code to supercharge your projects
Explore state-of-the-art in machine learning, AI, and robotics research. Browse papers, source code, models, and more by topics and authors. Connect with researchers and engineers working on related problems in machine learning, deep learning, natural language…
🎥 Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 15 - Batch Reinforcement Learning
👁 1 раз ⏳ 4727 сек.
👁 1 раз ⏳ 4727 сек.
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs234/index.html
To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html
To view aVk
Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 15 - Batch Reinforcement Learning
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To…
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To…
🎥 How Dangerous are AI and Algorithms? | Martin Ford | Rubin Report
👁 1 раз ⏳ 2072 сек.
👁 1 раз ⏳ 2072 сек.
In this episode of The Rubin Report Dave Rubin talks to Martin Ford (Author and Futurist) about AI, the power of computers and robots, Deep Learning, his views on promoting Universal Basic Income, and more. **Support The Rubin Report: http://www.rubinreport.com/donate
Stay tuned for Part 2 of Dave's interview with Martin Ford coming tomorrow and the full interview airing Friday 5/31.
Subscribe to The Rubin Report: http://www.youtube.com/subscription_center?add_user=RubinReport
See Dave LIVE: https://daVk
How Dangerous are AI and Algorithms? | Martin Ford | Rubin Report
In this episode of The Rubin Report Dave Rubin talks to Martin Ford (Author and Futurist) about AI, the power of computers and robots, Deep Learning, his views on promoting Universal Basic Income, and more. **Support The Rubin Report: http://www.rubinreport.com/donate…
🎥 Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 16 - Monte Carlo Tree Search
👁 1 раз ⏳ 4031 сек.
👁 1 раз ⏳ 4031 сек.
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs234/index.html
To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html
To view aVk
Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 16 - Monte Carlo Tree Search
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To…
http://onlinehub.stanford.edu/
Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group
To…
EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling
http://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
🔗 EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling
Posted by Mingxing Tan, Staff Software Engineer and Quoc V. Le, Principal Scientist, Google AI Convolutional neural networks (CNNs) are c...
http://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
🔗 EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling
Posted by Mingxing Tan, Staff Software Engineer and Quoc V. Le, Principal Scientist, Google AI Convolutional neural networks (CNNs) are c...
research.google
EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling
Posted by Mingxing Tan, Staff Software Engineer and Quoc V. Le, Principal Scientist, Google AI Convolutional neural networks (CNNs) are commonly de...
🎥 Should AI Research Try to Model the Human Brain?
👁 1 раз ⏳ 420 сек.
👁 1 раз ⏳ 420 сек.
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
₿ Crypto and PayPal links are available below. Thank you very much for your generous support!
› PayPal: https://www.paypal.me/TwoMinutePapers
› Bitcoin: 1a5ttKiVQiDcr9j8JT2DoHGzLG7XTJccX
› Ethereum: 0xbBD767C0e14be1886c6610bf3F592A91D866d380
› LTC: LM8AUh5bGcNgzq6HaV1jeaJrFvmKxxgiXg
📝 The paper "Reinforcement Learning, Fast and Slow" is available here:
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30Vk
Should AI Research Try to Model the Human Brain?
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
₿ Crypto and PayPal links are available below. Thank you very much for your generous support!
› PayPal: https://www.paypal.me/TwoMinutePapers
› Bitcoin: 1a5ttKiVQiDcr9j8J…
₿ Crypto and PayPal links are available below. Thank you very much for your generous support!
› PayPal: https://www.paypal.me/TwoMinutePapers
› Bitcoin: 1a5ttKiVQiDcr9j8J…
Соревнование ML-систем на лингвистическом материале. Как мы учились заполнять пропуски
https://habr.com/ru/company/abbyy/blog/453974/
🔗 Соревнование ML-систем на лингвистическом материале. Как мы учились заполнять пропуски
Каждый год в Москве проходит конференция "Диалог", в которой участвуют лингвисты и специалисты по анализу данных. Они обсуждают, что такое естественный язык, как...
https://habr.com/ru/company/abbyy/blog/453974/
🔗 Соревнование ML-систем на лингвистическом материале. Как мы учились заполнять пропуски
Каждый год в Москве проходит конференция "Диалог", в которой участвуют лингвисты и специалисты по анализу данных. Они обсуждают, что такое естественный язык, как...
Хабр
Соревнование ML-систем на лингвистическом материале. Как мы учились заполнять пропуски
Каждый год в Москве проходит конференция " Диалог ", в которой участвуют лингвисты и специалисты по анализу данных. Они обсуждают, что такое естественный язык, как научить машину его...
🎥 Epic Growth Conference: Андрей Законов (ВКонтакте). Product-driven подход к машинному обучению
👁 5 раз ⏳ 1411 сек.
👁 5 раз ⏳ 1411 сек.
🔥Telegram-канал по продуктовому маркетингу: https://www.t.me/epicgrowth
Директор по росту и исследованиям ВКонтакте Андрей Законов рассказал на Epic Growth Conference, как получить прирост активности пользователей с помощью внедрения машинного обучения в продукт, а также поделился интересными результатами экспериментов.
Расшифровка доклада: https://vc.ru/marketing/69828-product-driven-podhod-k-mashinnomu-obucheniyu-keys-vkontakte
#egconfVk
Epic Growth Conference: Андрей Законов (ВКонтакте). Product-driven подход к машинному обучению
🔥Telegram-канал по продуктовому маркетингу: https://www.t.me/epicgrowth
Директор по росту и исследованиям ВКонтакте Андрей Законов рассказал на Epic Growth Conference, как получить прирост активности пользователей с помощью внедрения машинного обучения в…
Директор по росту и исследованиям ВКонтакте Андрей Законов рассказал на Epic Growth Conference, как получить прирост активности пользователей с помощью внедрения машинного обучения в…
The Definite Guide For Creating An Academic-Level Dataset With Industry Requirements & Constraints
🔗 The Definite Guide For Creating An Academic-Level Dataset With Industry Requirements & Constraints
Guidelines For Creating Your Own Data With Industry Requirements & Constraints. Aimed To Aid You When Making Key Decisions.
🔗 The Definite Guide For Creating An Academic-Level Dataset With Industry Requirements & Constraints
Guidelines For Creating Your Own Data With Industry Requirements & Constraints. Aimed To Aid You When Making Key Decisions.
Towards Data Science
The Definite Guide For Creating An Academic-Level Dataset With Industry Requirements And Constraints
Guidelines For Creating Your Own Data With Industry Requirements & Constraints. Aimed To Aid You When Making Key Decisions.
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
🔗 Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Reinforcement learning is currently one of the hottest topics in machine learning. For a recent conference we attended (the awesome Data…
🔗 Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Reinforcement learning is currently one of the hottest topics in machine learning. For a recent conference we attended (the awesome Data…
Towards Data Science
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Reinforcement learning is currently one of the hottest topics in machine learning. For a recent conference we attended (the awesome Data…
From Ian Goodfellow https://twitter.com/goodfellow_ian/status/1133528189651677184
🔗 Ian Goodfellow on Twitter
Whoa! It turns out that famous examples of NLP systems succeeding and failing were very misleading. “Man is to king as woman is to queen” only works if the model is hardcoded not to be able to say “king” for the last word.
🔗 Ian Goodfellow on Twitter
Whoa! It turns out that famous examples of NLP systems succeeding and failing were very misleading. “Man is to king as woman is to queen” only works if the model is hardcoded not to be able to say “king” for the last word.
X (formerly Twitter)
Ian Goodfellow (@goodfellow_ian) on X
Whoa! It turns out that famous examples of NLP systems succeeding and failing were very misleading. “Man is to king as woman is to queen” only works if the model is hardcoded not to be able to say “king” for the last word.
🎥 How Deep Neural Networks Work
👁 4 раз ⏳ 1405 сек.
👁 4 раз ⏳ 1405 сек.
How Deep Neural Networks Work
A gentle introduction to the principles behind neural networks, including back-propagation.
#Deep #Neural #NetworksVk
How Deep Neural Networks Work
How Deep Neural Networks Work
A gentle introduction to the principles behind neural networks, including back-propagation.
#Deep #Neural #Networks
A gentle introduction to the principles behind neural networks, including back-propagation.
#Deep #Neural #Networks